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ABSTRACT 1 

Microscopic traffic simulation is vital to assess the performances of various traffic 2 
operation and management schemes. Microscopic traffic simulation is usually not parameter-3 
free, and it relies on independent parameters to predict traffic evolution. Thus, parameter 4 
calibration is indispensable to conveying trustworthy simulation results. Heuristic algorithms 5 
are widely used for parameter calibration. Its logic is for achieving iterative optimization 6 
through continuous trial-and-error simulations. This process is time-consuming and usually 7 
takes several hours, making the calibration unable to meet the requirements of fast and efficient. 8 
In recent years, Parallel Computing Technology (PCT) has been gradually applied in the 9 
engineering realm, which makes rapid calibration possible. Following the three steps of parallel 10 
framework selection, algorithm bottleneck identification, and subtask load balancing, this paper 11 
designs and implements the parallelization of Genetic algorithm (GA) and Particle Swarm 12 
Optimization (PSO) calibration algorithms. Finally, the proposed parallel framework is applied 13 
to simulation parameter calibration of a section of a 5 km long highway in Australia, and the 14 
effectiveness of parallel computing is evaluated from the two dimensions of reduction in 15 
calibration computational time and scalability. The results show that the proposed parallel 16 
calibration algorithm can shorten the 5-hour calibration process to less than 1 hour, reducing 17 
the calibration time by 80%. The parallel PSO calibration algorithm has better scalability, and 18 
its acceleration effect is better when more processors are used. 19 
 20 
Keywords: model calibration, traffic simulation, parallel computing, genetic algorithm, 21 
particle swarm optimization. 22 
  23 
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INTRODUCTION 1 

Micro-traffic simulation has become a necessary technical support tool to assess and 2 
predict the performances of various traffic operation and management schemes. In the 3 
microscopic traffic simulation model, the driver behavior, the characteristics of traffic flow, and 4 
the operation of the traffic system are all described by the calculus of many internal independent 5 
parameters, so the ability of the simulation model to reproduce the actual traffic flow mainly 6 
depends on the value of the parameters. Micro-traffic simulation platforms often set default 7 
values of parameters based on the traffic flow characteristics of the country where the platform 8 
is developed. However, these default values often do not match with the specific application 9 
scenarios, resulting in low simulation accuracy. Therefore, in practical applications, parameter 10 
calibration has become a prerequisite for all subsequent works. 11 

The parameter calibration of microscopic traffic simulation is essentially a combined 12 
optimization problem with multiple objectives. The trial-and-error method, proxy models, and 13 
heuristic algorithms have been used to solve this essential engineering problem. Gardes et al. 14 
(1) and Gomes et al. (2) used the trial-and-error method to calibrate the PARAMICS and 15 
VISSIM simulation models. This kind of method is only suitable for small-scale road networks. 16 
The calibration process is highly subjective, resulting in low efficiency. 17 

Some researchers used the proxy model to calibrate the parameters. Osorio et al. (3) 18 
proposed a simulation-based meta-model calibration method. This method used the structural 19 
information of the problem to establish an analytical approximation of the input-output 20 
mapping between the calibration parameters and the simulation output. Ištoka Otkovic et al.(4) 21 
applied the neural network to the parameter calibration of microscopic traffic simulation. They 22 
used the neural network to replace the process of simulation evaluation. These methods are 23 
currently often used for the simulation and calibration of large and complex networks (5; 6). 24 

At present, compared with other methods, heuristic algorithms such as GA and PSO have 25 
been more widely used. Siddharth (7) et al. adopted Elementary Effects to perform sensitivity 26 
analysis and realized simulation parameter calibration based on GA. Focusing on heuristic 27 
optimization algorithms, Abdalhaq et al. (8) compared the calibration effects of GA, Tabu 28 
Search (TS), PSO, and Simultaneous Perturbation Stochastic Approximation (SPSA) based on 29 
the SUMO. Experimental results showed that the SPSA algorithm had certain limitations in 30 
terms of parallelization, while PSO could be highly parallelized, and thus they had good 31 
potential in solving high-latitude problems. The application of the heuristic algorithm, which 32 
derives the optimal combination through iterative evolution, speeds up the process of parameter 33 
calibration to a certain extent. 34 

However, the heuristic algorithm realizes iterative optimization through continuous trial-35 
and-error simulation, which is very time-consuming, making the calibration based on the 36 
heuristic algorithm unable to meet the requirements of time cost and efficiency. To make the 37 
accuracy of the simulation model reach an acceptable level, it still takes several hours(7-9). 38 

In recent years, with the popularity of multi-core computers, Parallel Computing 39 
Technology (PCT) has gradually become a research hotspot in the computer field. Parallel 40 
computing divides the problem into subtasks and solves them on multiple processors at the 41 
same time. It has been successfully applied in fields such as big data mining and the modeling 42 
of complex phenomena(10-13), which improves the computational efficiency of programs. 43 

There have been researches on applying PCT to parameter calibration in recent years. Hou 44 
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et al.(9) proposed a multi-threaded optimization Quasi-monte carlo Particle Swarm (QPS) 1 
calibration method, realizing parallel computing. However, their research focused on the 2 
application of Quasi-Monte Carlo (QMC) sampling. The proposed QMC is an efficient and 3 
robust method that allows modelers to filter out redundant samples and find the global optimum 4 
in time. Dadashzadeh et al. (14) applied PCT to the heuristic algorithm by realizing the parallel 5 
of loop sentences, and then developed a fast calibration strategy.  6 

However, the studies so far still have the following problems. First, these studies only 7 
realized simple applications of parallel computing, without consideration of the entire algorithm 8 
design from the perspective of parallel computing. Secondly, researchers only focused on the 9 
reduction of calibration computational time when evaluating the efficiency improvement of 10 
parallel computing. In fact, when computing resources increase, different parallel computing 11 
algorithms obtain different acceleration capabilities, and this ability to utilize the increased 12 
computing resources is named scalability. A comprehensive parallel computing efficiency 13 
evaluation system that takes into account the reduction of computing time and the scalability of 14 
the algorithm itself has been missing for a long time. 15 

Therefore, this paper applies PCT to the parameter calibration of microscopic traffic 16 
simulation. To make up for the shortcomings of the current research, as summarized above, our 17 
work is as follows: 18 

 Following three steps of parallel framework selection, computing bottleneck 19 
identification, and load balancing design, the parallelization of the GA and PSO are 20 
designed and implemented to realize parameter calibration.  21 

 A SUMO simulation model containing high-density traffic flow is used, and the 22 
established parallel algorithms are applied to the simulation model for verification, 23 
which proves the effectiveness of the algorithms in terms of accuracy and efficiency. 24 

 The performance of parallel computing on the two calibration algorithms is evaluated 25 
and compared from both dimensions of calibration computational time and scalability. 26 

The rest of this article is organized as follows. In the part of problem formulation, the 27 
mathematical problem behind the calibration of micro-traffic simulation models is described in 28 
detail from the perspective of objective functions and the parameter space for optimization. The 29 
methodology part introduces the overall framework of the proposed parameter calibration 30 
method using PCT. In the case study section, based on the SUMO simulation platform, the 31 
proposed algorithms are used to calibrate the traffic flow of a section of an expressway in 32 
Australia. The findings and conclusions of the experiment are discussed in the section of the 33 
conclusion. 34 

 35 
CALIBRATION PROBLEM FORMULATION  36 
objective function 37 

The calibration of micro traffic simulation is essentially a combinatorial optimization 38 
problem with objective functions, and the parameters are constrained. The ultimate goal is to 39 
minimize the difference between the simulated traffic flow and the actual traffic flow. In order 40 
to make the traffic flow velocity of the simulation model achieve high accuracy, and at the same 41 
time simulate the formation and dissipation of bottlenecks in the actual traffic flow as much as 42 
possible, this paper refers to the research of Song et al. (15) . The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 （root mean 43 

square error of the speed） and the bottleneck range matching index 𝐶𝐶1 are simultaneously 44 
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adopted as the objective functions of parameter calibration, and the specific formulas are as 1 
follows: 2 

Minimize         𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 = �∑ � (𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)−𝑅𝑅𝑆𝑆(𝑖𝑖,𝑡𝑡))2𝑇𝑇
𝑡𝑡=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
𝑖𝑖=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑×𝑇𝑇
             （1） 3 

Maximize          𝐶𝐶1 = 2∑ ��∑ [𝐵𝐵𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)∧𝐵𝐵𝑆𝑆𝑅𝑅(𝑖𝑖,𝑡𝑡)]𝑇𝑇
𝑡𝑡=1 �⋅(𝑙𝑙𝑖𝑖+−𝑙𝑙𝑖𝑖)�𝑁𝑁

𝑖𝑖=1
∑ ��∑ [𝐵𝐵𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)∨𝐵𝐵𝑆𝑆𝑅𝑅(𝑖𝑖,𝑡𝑡)]𝑇𝑇

𝑡𝑡=1 �⋅(𝑙𝑙𝑖𝑖+−𝑙𝑙𝑖𝑖)�𝑁𝑁
𝑖𝑖=1

        （2） 4 

Restriction       X = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑗𝑗} j = {1, 2, …, K} , 𝐿𝐿𝐿𝐿𝑥𝑥𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑈𝑈𝐿𝐿𝑥𝑥𝑗𝑗     （3） 5 

In the formula, X  represents the parameter vector. 𝐿𝐿𝐿𝐿𝑥𝑥𝑗𝑗，𝑈𝑈𝐿𝐿𝑥𝑥𝑗𝑗 are the lower and upper  6 

limits of parameter 𝑥𝑥𝑗𝑗(j =  {1, 2 , … K}). 𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) is the speed collected by the 𝑖𝑖 -th (i =7 

 {1, 2 , …𝑁𝑁𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑}) detector of the simulation model in the 𝑡𝑡-th (t =  {1, 2 , … T}) time period, 8 

while the speed collected by the actual field detectors is denoted as 𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡). 𝑇𝑇 is the number 9 

of time periods during which the detectors collect data (simulation duration is 120 𝑚𝑚𝑖𝑖𝑚𝑚 , 10 

collected every 2 𝑚𝑚𝑖𝑖𝑚𝑚, 𝑇𝑇 = 120/2 = 60 ). Furthermore, 𝑁𝑁𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 denotes the total number 11 

of coil detectors. 12 

𝐶𝐶1 is a quantitative index that reflects the matching degree of the actual and simulated 13 

traffic flow’s spatio-temporal bottleneck range. First, the binary speed space-time maps of the 14 

simulated and actual traffic flow need to be calculated and generated, which represent the binary 15 

form of the average speed value of the 𝑖𝑖th detector at the  𝑡𝑡th time period : 16 

 if  𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) < 𝑉𝑉𝑡𝑡ℎ ,𝐵𝐵𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) = 1 , else 𝐵𝐵𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) = 0 (4) 17 

 if  𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) < 𝑉𝑉𝑡𝑡ℎ ,𝐵𝐵𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡) = 1 , else 𝐵𝐵𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡) = 0 (5) 18 
In the formula: 𝑉𝑉𝑡𝑡ℎ is the congestion threshold. When the speed value is less than 𝑉𝑉𝑡𝑡ℎ, it 19 

is considered that there is congestion on the expressway at this spatio-temporal point, which is 20 
45 km/h in our study. 21 

In formula (2), 𝐵𝐵𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) ∧ 𝐵𝐵𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡) represents the intersection of matrices, which is 22 

calculated mathematically by multiplying the internal elements of two matrices, while 23 

𝐵𝐵𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) ∨ 𝐵𝐵𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡)  represents the union. When 𝐶𝐶1 = 1 , it means that the actual and 24 

simulated traffic flow bottleneck areas are completely matched. 𝑙𝑙𝑖𝑖+ − 𝑙𝑙𝑖𝑖  represents the 25 

distance between two coils. 26 

Parameter space for optimization  27 

The driving behavior parameters of the SUMO simulation software are mainly divided 28 

into three modules, including car following model, lane changing model, and speed distribution 29 

module. In this paper, the Intelligent Driver Model (IDM) was selected as the car following 30 

model, which was first proposed by Treiber et al. (16) based on the generalized force model. 31 

IDM has few parameters which are present clear meaning. This model has been widely used, 32 

and it often produces consistent results with empirical observations. There are two lane 33 

changing models of SL2015 (17) and CL2013 (18) in SUMO simulation platform. SL2015 is a 34 

sub-lane model, which is only applicable to the simulation scenarios of lane splitting. Therefore, 35 
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the CL2013 lane change model for lane selection was adopted in this paper.  1 

In SUMO, the driving speed of the simulated vehicles is modeled by assigning to each 2 
vehicle an individual multiplier which gets applied to the road speed limit. This multiplier is 3 
called the “individual speedfactor”. The product of the road speed limit and the individual speed 4 
factor gives the desired free flow driving speed of a vehicle. The expected value of the 5 
“individual speedfactor” is denoted as “SpeedFactor”, while, the “SpeedDev” represents the 6 
deviation of the “SpeedFactor”. These two parameters form a speed distribution module that 7 
controls the sampling of vehicle speed. The specific meanings of the two parameters are shown 8 
in Table 1. 9 
TABLE 1 Parameters of the speed distribution module 10 

Parameter names Definition default value 

SpeedFactor 
The vehicles’ expected 
multiplier for lane speed 
limits 

1.0 

SpeedDev 
The deviation of the 
SpeedFactor 

0.1 

We followed several principles to determine the ranges of the parameters to be calibrated. 11 
First of all, the ranges of parameters must comply with the basic regulations of sumo's official 12 
documents. Secondly, constraints between parameters needed to be considered. For example, 13 
from common sense, the value of emergency deceleration would be larger than that of normal 14 
deceleration. Then the ranges of parameters with similar meanings in previous studies also 15 
needed to be referred to. Finally, we also refer to the default values given in SUMO, making 16 
the ranges around the default values. 17 

After an initial selection, 19 parameters were used for calibration, far exceeding the 18 
expected number of calibration parameters. Too many calibration parameters would lead to 19 
high dimensionality and computational complexity of the parameter calibration problem. 20 
Therefore, in order to save computing resources and reduce the dimension of the optimization 21 
problem, avoiding the trap of local optimal solution, we used the sobol sensitivity analysis (19) 22 
to realize the selection of key parameters. 23 

Sobol sensitivity analysis is based on the basic assumption that variance can well represent 24 
the uncertainty of the model’s output. This method uses the sobol sequence for sampling, which 25 
can be divided into two steps: the value acquisition using sobol sequence and the sample 26 
generation. 27 

Sobol sequence is essentially a quasi-random low-discrepancy sequence used to generate 28 
uniform samples of parameter space, which is constructed by linear recurrence relations in finite 29 
fields. In this paper, we generated a basic sobol sequence matrix Mbasic  of size 30 
(𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠+skipvalue, 2D) based on the sobol sequence generator proposed by Frances et al. (20). 31 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 is the number of sample points taken, and 𝐷𝐷 is the number of random variables for 32 

sensitivity analysis. Since the initial points of the sobol sequence had some repetitions, 33 
skipvalue, a positive integer, was set to skip these points in the previous part. Therefore, starting 34 
from the skipvalue+1 bit of the basic sobol sequence, a basic sobol sequence matrix 𝑅𝑅𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑙𝑙 of 35 
size (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠, 2D) was generated. We scaled the sequence value to the sample space formed 36 
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by the thresholds of all parameters according to a uniform distribution, then obtained a sample 1 
parameter matrix 𝑅𝑅𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠 with 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 rows and 2D columns. 2 

Latin Hypercube Sampling (LHS) was first described by Michael McKay(21) in 1979, 3 
which is a statistical method for generating near-random samples of parameters from 4 
multidimensional distributions. The sampling process of LHS consists of two parts: interval 5 
sampling and sample sorting. LHS firstly stratifies the sample space according to the 6 
cumulative probability density curves of random variables, then conducts sampling in each 7 
sample space. Finally, LHS uses the sorting algorithm to make the correlation between random 8 
variables of the sampling result consistent with the one between the real random variables. 9 

We took the sampling in a one-dimensional sample space as an example. With 300 sample 10 
points generated in the 𝑋𝑋 ∈  [0, 1] interval, the results of sobol sequence sampling are 11 
compared with those generated by LHS which is commonly used, as shown in Figures 1 and 12 
2. The horizontal axis represents the serial number of the sample point. A total of 300 sample 13 
points were generated. The vertical axis is the value of the sample point. As can be seen from 14 
the figure, sample points generated by sobol sequence sampling are more evenly distributed, 15 
with wide coverage and better diversity. 16 

  
 17 
FIGURE 1 Sobol Sampling                       FIGURE 2 LHS Sampling 18 

After the sample parameter matrix 𝑅𝑅𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠  with 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠  rows and 2D columns was 19 

obtained, the sample matrixes for sobol sensitivity analysis needed to be generated. Took the 20 

first D column of the matrix 𝑅𝑅𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠 as matrix A, and the last D column as matrix B. Then, we 21 

replaced the d th column of matrix A with the d th column in matrix B to construct the matrix 22 

with 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 rows and D columns 𝐴𝐴𝐵𝐵𝑑𝑑 (d=1, 2, 3, …, D). So far, a total of D+2 sample 23 

matrices of A, B, 𝐴𝐴𝐵𝐵1, 𝐴𝐴𝐵𝐵2, …𝐴𝐴𝐵𝐵𝐷𝐷 had been constructed for sobol sensitivity analysis. The 24 

obtained sample matrixes were put into the simulation model to get 𝑌𝑌𝐴𝐴,𝑌𝑌𝐵𝐵 ,𝑌𝑌AB1 ,𝑌𝑌AB2 , … ,𝑌𝑌AB𝐷𝐷. 25 

In this paper, each value of the Y matrix was the first objective function value 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 26 

(formula 1) obtained after the corresponding parameter combination was simulated. The global 27 

sensitivity index 𝑅𝑅𝑇𝑇𝑑𝑑 of 𝑑𝑑th parameter was calculated according to the following formula: 28 

 𝑅𝑅𝑇𝑇𝑑𝑑 =
𝐸𝐸𝑋𝑋𝑑𝑑�Var𝑋𝑋𝑑𝑑(𝑌𝑌∣𝑋𝑋𝑑𝑑)�

Var (𝑌𝑌)
 (6) 29 

 Within the formula: 30 
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 𝑅𝑅𝑋𝑋𝑑𝑑�Var𝑋𝑋𝑑𝑑(𝑌𝑌 ∣ 𝑋𝑋𝑑𝑑)� = 1
2𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

∑  𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑
𝑠𝑠=1 (𝑓𝑓(A)𝑠𝑠 − 𝑓𝑓(AB𝑑𝑑)𝑠𝑠)2 (7)1 

 Var (𝑌𝑌) = Var (𝑌𝑌𝐴𝐴 + 𝑌𝑌𝐵𝐵) (8) 2 

In the formula, 𝑓𝑓(. )𝑠𝑠 denotes the value in the 𝑚𝑚th row in the matrix 𝑌𝑌(.), representing 3 
the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑   (formula 1) obtained after the 𝑚𝑚 th parameter combination in the 4 

corresponding sample matrix was simulated. Referring to previous studies (22), when the global 5 
sensitivity index 𝑅𝑅𝑇𝑇𝑑𝑑 of 𝑑𝑑th parameter is greater than 2%, this parameter can be considered 6 
as a key parameter and usually needs to be calibrated. Therefore, according to the results of the 7 
sobol sensitivity analysis, we sorted the global sensitivity index values of all parameters from 8 
largest to smallest, and selected the top 7 parameters as the key parameter set to be calibrated. 9 
Table 2 shows the final selected calibration parameters and their value ranges. 10 

TABLE 2 Calibration Parameters  11 

Parameter names Definition 
Total 

Sensitivity 
index ST 

Range 

Tau 
Minimum driving interval expected by 
the drivers 

0.766 [1, 4] 

SpeedFactor 
The vehicles’ expected multiplier for lane 
speed limits 

0.431 [0, 1] 

SpeedDev The deviation of the speedFactor 0.372 [2, 9] 

IcCooperative 
Willingness of drivers to cooperate in 
lane changing. A lower value means less 
cooperation between vehicles. 

0.275 [0, 0.5] 

Accel Acceleration capacity of vehicles 0.139 [0.5, 1.5] 
Decel Deceleration capacity of vehicles 0.097 [0.8, 1.5] 

IcAssertive 
Willingness to accept lower front and rear 
gaps on the target lane. The required gap 
is divided by this value. 

0.049 [1, 7] 

 12 
METHODOLOGY 13 

In the methodology section, two GA and PSO, which are two classical heuristic algorithms 14 
widely used in calibration problems, are presented in detail. Then, the parallel frameworks of 15 
the two calibration algorithms are designed and implemented following three steps: the parallel 16 
framework selection, computing bottleneck identification, and load balancing design. 17 

 18 
Genetic Algorithm and Particle Swarm Optimization 19 
Genetic algorithm 20 

Genetic algorithm (GA) is a non-deterministic quasi-natural algorithm, first proposed by 21 
Holland(23) in 1975. The GA first composes a certain number of genetically encoded 22 
individuals into the initial population. According to the principle of survival of the fittest, 23 
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individuals are selected to generate new populations according to their fitness. The selected 1 
outstanding individuals are combined, crossed, and mutated to achieve individual 2 
reorganization. The above process continues to iterate and loop, producing a better approximate 3 
solution in the evolution.  4 

The GA used in this article is as follows: 5 
(1) The generation of the initial population. We randomly sample within the value range of 6 

each parameter to generate the initial population. Then the Gray coding is used to map the 7 
parameter sets from the solution space to the search space that the genetic algorithm can 8 
handle. 9 

(2) Fitness function. In this paper, the Root Mean Squared Error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 (formula 1) of 10 

the speed and the index C1 (formula 2) is used as the basis of the fitness function. We use 11 
exponential change to make it conform to the convention that the smaller the simulation 12 
error, the greater the adaptability. 13 

(3) Selection. Based on the fitness values of different individuals, outstanding individuals are 14 
selected to produce offspring populations in accordance with the evolutionary principle. 15 
This paper adopts the method of tournament selection. We take a certain number of 16 
individuals from the population each time, using sampling with replacement, and then select 17 
the best one to enter the progeny population. Repeat this operation until the new population 18 
size reaches the original value. 19 

(4) Crossover. Two individuals for evolution are randomly selected. The same position of the 20 
two carries out gene exchange according to the crossover probability 𝑃𝑃𝑑𝑑 to produce a new 21 
individual. 22 

(5) Mutation. The mutation operation in this paper is to invert the corresponding bit of the 23 
individual code according to the set mutation probability 𝑃𝑃𝑠𝑠. 24 
Repeat the above process until individuals who meet the fitness value requirements are 25 

obtained. When designing and selecting the hyperparameters of GA, in order to ensure the 26 
fairness of the comparison, the population size of each generation was determined to be equal 27 
to the number of particles in each generation in PSO. We mainly considered the crossover 28 
probability 𝑃𝑃𝑑𝑑  and the mutation probability 𝑃𝑃𝑠𝑠  when adjusting the GA. An orthogonal 29 
experiment with two Factors and five Levels was designed for the two parameters in the GA, 30 
and 25 parameter combinations were generated. In order to avoid the influence of the 31 
randomness and random errors of the microscopic traffic simulation model on the test results, 32 
5 groups of experiments were repeated for each parameter combination, and the mean values 33 
of the objective function values were compared. The following GA parameters have given the 34 
best results: crossover probability 𝑃𝑃𝑑𝑑 = 0.8, mutation probability 𝑃𝑃𝑠𝑠 = 0.01. Therefore, we 35 
have adopted this hyperparameter combination in GA in subsequent experiments. 36 

Particle swarm optimization 37 
The PSO algorithm is a swarm intelligence algorithm proposed by Eberhart et al. (24) in 38 

1995. The algorithm regards individuals as random particles, and guides particles to move to 39 
the optimal solution through the local and global optima.  40 

We used the PSO algorithm with M particles to solve a problem with a search space of 41 

dimension K. In 𝑥𝑥𝑖𝑖,𝑛𝑛
𝑗𝑗  , 𝑚𝑚, 𝑖𝑖, 𝑗𝑗  respectively represent, in the 𝑚𝑚 th (1 ≤ 𝑚𝑚 ≤ 𝑁𝑁 ) iteration, the 42 

position in 𝑗𝑗𝑡𝑡ℎ (1 ≤ 𝑗𝑗 ≤ 𝐾𝐾)  dimension of the 𝑖𝑖𝑡𝑡ℎ (1 ≤ 𝑖𝑖 ≤ 𝑅𝑅)  particle. Then in the 𝑚𝑚𝑡𝑡ℎ 43 
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iteration of PSO, the current position and current velocity of the 𝑖𝑖𝑡𝑡ℎ (1 ≤ 𝑖𝑖 ≤ 𝑅𝑅) particle can 1 

be denoted as 𝑋𝑋𝑖𝑖,𝑛𝑛 = �𝑥𝑥𝑖𝑖,𝑛𝑛1 , 𝑥𝑥𝑖𝑖,𝑛𝑛2 ,⋯ , 𝑥𝑥𝑖𝑖,𝑛𝑛
𝑗𝑗 ,⋯ , 𝑥𝑥𝑖𝑖,𝑛𝑛𝐾𝐾 � ,and 𝑉𝑉𝑖𝑖,𝑛𝑛 = �𝑉𝑉𝑖𝑖,𝑛𝑛1 ,𝑉𝑉𝑖𝑖,𝑛𝑛2 ,⋯ ,𝑉𝑉𝑖𝑖,𝑛𝑛

𝑗𝑗 ,⋯ ,𝑉𝑉𝑖𝑖,𝑛𝑛𝐾𝐾 � . In 2 

the 𝑚𝑚𝑡𝑡ℎ  iteration, the velocity and position of the 𝑖𝑖𝑡𝑡ℎ  particle in the 𝑗𝑗𝑡𝑡ℎ  dimension 3 
component are updated using the following formulas: 4 

 𝑉𝑉𝑖𝑖,𝑛𝑛+1
𝑗𝑗 ← 𝑤𝑤𝑉𝑉𝑖𝑖,𝑛𝑛

𝑗𝑗 + 𝑐𝑐1𝑟𝑟𝑖𝑖,𝑛𝑛
𝑗𝑗 �𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛

𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑛𝑛
𝑗𝑗 � + 𝑐𝑐2𝑅𝑅𝑖𝑖,𝑛𝑛

𝑗𝑗 �𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛
𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑛𝑛

𝑗𝑗 �  (9) 5 

 𝑥𝑥𝑖𝑖,𝑛𝑛+1
𝑗𝑗 ← 𝑥𝑥𝑖𝑖,𝑛𝑛

𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑛𝑛+1
𝑗𝑗  (10) 6 

𝑖𝑖 = 1,2, … ,𝑅𝑅; 𝑗𝑗 = 1, 2, … ,𝐾𝐾;𝑚𝑚 = 1,2, … ,𝑁𝑁 7 
In the formula, 𝑐𝑐1  and 𝑐𝑐2  are acceleration factors of the self-learning and the social 8 

learning respectively, which are used to adjust the convergence speed of the algorithm. The 9 
vector  10 

𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛 = �𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛1 ,𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛2 ,⋯ , 𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛
𝑗𝑗 ,⋯ ,𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛𝐾𝐾 � 11 

is the position with the best fitness value of the 𝑖𝑖 th particle from initialization to the 𝑚𝑚 th 12 
iteration, which also known as the individual optimal position. After each iteration, the 13 
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛 of each particle is updated according to the following formula: 14 

 𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛+1 = �
𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛,     𝑓𝑓�𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛� < 𝑓𝑓�𝑋𝑋𝑖𝑖,𝑛𝑛+1�
𝑋𝑋𝑖𝑖,𝑛𝑛+1,     𝑓𝑓�𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛� ≥ 𝑓𝑓�𝑋𝑋𝑖𝑖,𝑛𝑛+1�

 (11) 15 

f(.) is the objective function to obtain the fitness value of the corresponding position. The 16 
vector   17 

𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛 = �𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛1,𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛2,⋯ ,𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛
𝑗𝑗 ,⋯ ,𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛𝐾𝐾� 18 

in Equation (9) is the position with the best fitness value among all 𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑛𝑛 until the 𝑚𝑚𝑡𝑡ℎ 19 

iteration, 𝑔𝑔𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛  is also called the global optimal position. 𝑟𝑟𝑖𝑖,𝑛𝑛
𝑗𝑗   and 𝑅𝑅𝑖𝑖,𝑛𝑛

𝑗𝑗   are random 20 

numbers that satisfy the uniform distribution from 0 to 1, denoted as 𝑟𝑟𝑖𝑖,𝑛𝑛
𝑗𝑗 ,𝑅𝑅𝑖𝑖,𝑛𝑛

𝑗𝑗 ∼ 𝑈𝑈(0,1), which 21 

are set to raise the randomness of the search, running iteratively. They are updated as each 22 
particle in each generation of the population moves through each dimension. So, for the 𝑖𝑖𝑡𝑡ℎ 23 
particle of the 𝑚𝑚𝑡𝑡ℎ generation swarm, when it is updated in the 𝑗𝑗𝑡𝑡ℎ dimension, the random 24 

items are denoted as 𝑟𝑟𝑖𝑖,𝑛𝑛
𝑗𝑗 ,𝑅𝑅𝑖𝑖,𝑛𝑛

𝑗𝑗 . 25 

Acceleration coefficients  𝐶𝐶1,𝐶𝐶2 represent the weighting of the stochastic acceleration 26 
terms that pull particles towards pbest and gbest. When 𝐶𝐶1=0, the algorithm converges quickly, 27 
but the algorithm's local search ability is poor, which means that the algorithm is easy to fall 28 
into the dilemma of local optimization. On the contrary, when C2=0, the algorithm only has the 29 
ability of self-learning, which will cause the algorithm to converge slowly and fail to find the 30 
global optimal solution. J. Kennedy et al. suggested statically setting the values of C1 and C2 31 
to 2 (24). Since then, many authors have followed this advice in their PSO studies(25; 26). The 32 
current main purpose of this paper is to compare the difference in the application effect of PCT 33 
on GA and PSO. For the fairness of the comparison, the prototypes of the two algorithms both 34 
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are standard forms. Therefore, in the selection of the acceleration coefficients, we refer to the 1 
common value of C1 = C2 = 2 , without considering the more complicated mechanism of 2 
controlling the acceleration coefficients. The inertia weight w is used to control the change 3 
range of the particles. If w is low (e.g. 0.3-0.4) means that the system is more dissipative. When 4 
the w is high (e.g. 0.8-0.9), the particles would move in a medium of low viscosity and do an 5 
extensive exploration of the space of parameters. While a larger value of w makes the PSO 6 
algorithm may have better global search capabilities to avoid falling into the trap of local optima. 7 
The parameter w can also be set larger than 1, however, this is not advisable as the swarm 8 
would turn out to be unstable. Through multiple experiments, Shi et al. (27) suggested that the 9 
inertia weight w should take a value in the interval [0.8, 1.2]. We tried several common values 10 
and finally found that when w =  0.9 , the results of the PSO calibration algorithm were 11 
relatively better. 12 

 13 
Parallel Computing Design 14 
The selection of parallel framework 15 

The selection of parallel architecture needs to consider the specific characteristics of the 16 
problem to be solved. Problems suitable for parallel computing technology often have the 17 
following salient features: 18 
 The problem can be decomposed into discrete pieces that can be executed concurrently; 19 
 The different discrete fragments obtained by decomposition have no requirement on the 20 

execution order, which means that they are independent fragments.  21 

  
 22 

（a）GA                        （b）PSO  23 

FIGURE 3 The framework of the calibration algorithm  24 
 25 
The genetic algorithm calibration process is shown in Figure 3(a). The order of execution 26 

of these main steps is fixed. The main steps are dependent on each other seriously, meaning that 27 
they cannot be parallelized. However, the three steps of running simulation to calculate fitness, 28 
crossover, and variation can be decomposed into independent discrete segments that can be 29 
executed concurrently. 30 

The main steps of the PSO calibration algorithm are shown in Figure 3(b) There is also a 31 
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strong dependency between the four main parts. The steps of updating the individual and global 1 
optima require a lot of communication between particles. Therefore, the two steps of evaluating 2 
particle fitness and updating particle position and velocity can be divided into discrete segments 3 
that could be executed by PCT. 4 

The computer framework can be divided into four categories from the two dimensions of 5 
instruction flow and data flow: Single Instruction Single Data (SISD), Single Instruction 6 
Multiple Data (SIMD), Multiple Instruction Single Data (MISD), and Multiple Instructions 7 
Multiple Data (MIMD). SISD is a serial machine in the standard sense. The other three 8 
categories belong to the framework of parallel computing in terms of their operation logic. In 9 
the MISD architecture, different processing units can independently execute different 10 
instruction streams, but they receive the same single data stream. The SIMD architecture is a 11 
typical parallel architecture. All processing units execute the same instruction in any clock cycle, 12 
and each processing unit processes different data elements. MIMD is a parallel computing 13 
framework in the highest sense, in which different processors can process different instruction 14 
streams and different data at the same time. 15 

According to the above analysis of the two calibration algorithms, in the GA and PSO 16 
calibration algorithms, a certain main step can be divided into discrete segments that are 17 
executed concurrently. In these steps, the instructions executed by the discrete segments are the 18 
same, which need to be applied to different data, and the results are returned to the main thread 19 
for information aggregation. Therefore, in this study, SIMD is an applicable parallel framework. 20 

 21 
The identification of calculation bottleneck 22 

This step is to analyze and identify which part of the whole process has completed most of 23 
the work of the program through a program analyzer or performance analysis tool. Based on 24 
the results of the analysis, we made the parallel computing technology focus on these key points 25 
of the program while ignoring the rest that takes up a small amount of Central Processing Unit 26 
(CPU) computing resources.  27 

The flame graph is a visualization tool that shows the proportion of CPU computing 28 
resources occupied by each function during the program operation. The flame graph is drawn 29 
based on the stack traces, which list all the functions being executed by the CPU at any given 30 
time. The flame graph shows the time distribution of program execution from a global 31 
perspective. Each column represents a call stack, and the bar is used to represent a specific 32 
function. The vertical axis arranges functions from bottom to top according to the calling 33 
relationship. On the horizontal axis, the flame graph aggregates many call stacks in alphabetical 34 
order, which does not represent a chronological order. 35 

The length of each bar represents the frequency of occurrence of the function in the sample. 36 
Therefore, the longer the bar, the longer the execution time of the function, which is most likely 37 
to be the calculation bottleneck of the algorithm.  38 

 39 
FIGURE 4 Flame Diagram of Single-thread GA Calibration The bar represents a specific 40 
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function. The vertical axis arranges functions from bottom to top according to the calling relationship. 1 
On the horizontal axis, the flame graph aggregates many call stacks in alphabetical order. The length of 2 
each bar represents the frequency of occurrence of the function in the sample. SimulationStep function 3 
of the GA calibration algorithm occupies most of the computing resources during the entire calibration 4 
process, which is extremely time-consuming. 5 

 6 

 7 

FIGURE 5 Flame Graph of Single-thread PSO Calibration The bar represents a specific function. 8 
The vertical axis arranges functions from bottom to top according to the calling relationship. On the 9 
horizontal axis, the flame graph aggregates many call stacks in alphabetical order. The length of each 10 
bar represents the frequency of occurrence of the function in the sample. SimulationStep, initialize, 11 
update function of the PSO calibration algorithm occupies most of the computing resources during the 12 
entire calibration process. 13 

 14 
When both algorithms run for 2 generations and simulate 5 times for each generation, the 15 

flame diagrams of the GA calibration algorithm and the flame diagram of the PSO calibration 16 
algorithm are shown in Figures 4 and 5. It can be seen from the graphs that the SimulationStep 17 
function of the two calibration algorithms occupies most of the computing resources during the 18 
entire calibration process, which is extremely time-consuming. The SimulationStep function 19 
writes the generated parameter sets into the SUMO simulation platform and controls the 20 
simulation model by using Traffic Control Interface (TraCI). While the TraCI is a traffic control 21 
interface that realizes the interaction between SUMO and external control algorithms. The 22 
interactions implemented in this article include controlling the start of the simulation and 23 
acquiring data in the SUMO traffic simulation environment. Therefore, based on the results of 24 
the flame graph analysis, we applied PCT to the SimulationStep function in the GA and PSO 25 
calibration algorithms, which means to realize the parallelization of simulation operation and 26 
the calculation of evaluation indexes. The structures of the two parallel calibration algorithms 27 
are shown in Figures 6 and 7. 28 
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 1 

FIGURE 6 Framework for Parallel GA Calibration The calibration algorithm and the SUMO 2 
simulation platform are marked with a gray background and a blue background, respectively. The values 3 
of the simulation parameters that need to be calibrated are changed in the vType.xml script through the 4 
traffic control interface (TraCI). In each generation,  𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀  refer to the position of all 5 
individuals in the problem optimization space with K. 6 
 7 
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 1 
FIGURE 7 Framework of Parallel PSO Calibration The calibration algorithm and the SUMO 2 
simulation platform are marked with a gray background and a blue background, respectively. The values 3 
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of the simulation parameters that need to be calibrated are changed in the vType.xml script through the 1 
traffic control interface (TraCI). In each generation,  𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀 refer to the position of all particles 2 
in the problem optimization space with K. 3 

 4 
The realization of the subtasks’ load balancing 5 

After the first two steps, the frameworks of the GA and PSO parallel calibration algorithm 6 
have been built. According to the characteristics of discrete segments, this step considers the 7 
design of load balancing for parallel computing. Load balancing refers to distributing 8 
approximately equal amounts of computing work on each processor, so that all processors 9 
remain busy at all times, minimizing the idle time of all processors. Load balancing is an 10 
important performance indicator of parallel programs. There are two main methods to realize 11 
load balancing of parallel computing, including equal distribution of tasks and dynamic task 12 
distribution. 13 

In the calibration problem of the microscopic traffic simulation model, the parameter 14 
combinations are input into the simulation model. Due to the difference in parameter selection, 15 
the running time and computational complexity of each simulation are not exactly the same. 16 
There are even some cases where the simulation exits due to the fact that the parameters are too 17 
biased. If the method of evenly distributing tasks is adopted in this problem, each processor 18 
would run the same number of simulations, making the unbalanced load inevitable.  19 

Therefore, in our work, the mode of task pool is tailored to realize the dynamic allocation 20 
of tasks, as shown in Figure 8. There are the main process and worker processes in the task 21 
pool mode. The main process is the entrance to the program execution, which can be understood 22 
as the main function of the program. PCT divides a big problem into small tasks, and the work 23 
processes are the program entities that perform the subtasks. Usually, there is only one main 24 
process and multiple worker processes. The task pool is set with a maximum number of 25 
processes and belongs to the main process. When a new work request is submitted to the task 26 
pool, if the pool is not full, a new work process will be created to execute the task. But if the 27 
number of processes in the pool has reached the upper limit, then the request will wait. Once a 28 
certain task in the pool ends, it will enter the task pool and be executed by the work process. 29 
This means that the fastest work process will complete more subtasks. 30 
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 1 

FIGURE 8 The Mode of Task Pool 2 
In the context of the heuristic algorithm calibration problem, the subtask is the simulation 3 

operation under a certain set of parameters. The execution results returned to the main process 4 
are the accuracy evaluation indexes calculated according to the simulation model. The task pool 5 
size is the number of computing cores used in parallel computing. 6 

 7 
CASE STUDY 8 

This section presents a case study. A simulation model of a 5 km long highway section is 9 
built for parameter calibration, based on the SUMO micro-simulation (28). First, the 10 
performance of the parallel GA and the parallel PSO proposed is compared from the perspective 11 
of accuracy.  12 

More importantly, this paper selects four quantitative indicators to evaluate the efficiency 13 
of parallel algorithms from the perspective of calibration computational time and scalability. In 14 
the result analysis part, the simulation computational time of the calibration algorithms with or 15 
without PCT is compared. One step further is that we change the number of processors used in 16 
parallel and compare the application effects of PCT on GA and PSO based on the established 17 
efficiency evaluation indicators.  18 
Simulation Scenario 19 
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The study area is in the upstream and downstream sections of the Deception Bay Street 1 
exit ramp and the Anzac Street entrance ramp of the Bruce Expressway in Australia, with a total 2 
length of 5 km，as shown in Figure 9. The study area includes basic highway sections, diverge 3 

areas and merge areas. The area where the ramp merges into the confluence area is a typical 4 
lane-drop bottleneck. 5 

 6 
FIGURE 9 The Geometrical Schematic Diagram of The Research Section 7 
     8 

Along the study section, there were 10 loop detectors, every 480 meters on average. Cross-9 
sectional data such as traffic, speed, and occupancy rate on the main lane could be obtained. 10 
This paper selected the field observation data on September 2, 2020 for parameter calibration 11 
research. By looking at the field loop detector data, the traffic entering the road segment began 12 
to increase sharply at around 5 AM, and obvious congestion began to appear at the ramp 13 
junction at around 6 AM and extended upward. After 8 AM, the congestion began to dissipate. 14 
The traffic flow data collected from 6:00 AM to 6:59 AM was used for the calibration 15 
experiments. The formation process of bottleneck congestion was included in the calibration 16 
period. The observed heatmap for speed during the calibration period is shown in Figure 10. 17 

 18 

FIGURE 10 Speed Heatmap for mainline (6:00 AM-6:59 AM) 19 
 20 
Calibration Accuracy Evaluation Indicators 21 

With reference to Song et al.'s research (15), this paper used two quantitative indicators, 22 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑙𝑙𝑑𝑑𝑓𝑓, to measure the degree of match between the simulation model 1 

and the actual traffic flow. 𝐶𝐶1, 𝐶𝐶2, and heat diagrams of speed were used to evaluate the degree 2 
of bottleneck range matching between the simulation and the observation. 3 

The root mean square error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑  and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑙𝑙𝑑𝑑𝑓𝑓 are shown below. 4 

   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 = �∑ � (𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)−𝑅𝑅𝑆𝑆(𝑖𝑖,𝑡𝑡))2𝑇𝑇
𝑡𝑡=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
𝑖𝑖=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑×𝑇𝑇
       (formula 1） 5 

   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑙𝑙𝑑𝑑𝑓𝑓 = �∑ � (𝑆𝑆𝑓𝑓(𝑖𝑖,𝑡𝑡)−𝑅𝑅𝑓𝑓(𝑖𝑖,𝑡𝑡))2𝑇𝑇
𝑡𝑡=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
𝑖𝑖=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑×𝑇𝑇
          (12) 6 

The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑   is used as the first objective function (formula 1) above. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑙𝑙𝑑𝑑𝑓𝑓 7 

denotes the root mean square error of traffic flow. 𝑅𝑅𝑓𝑓(𝑖𝑖, 𝑡𝑡) represents the average traffic volume 8 

collected by the 𝑖𝑖-th (𝑖𝑖 =  {1, 2 , … ,𝑁𝑁𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑}) detector of the simulation model during the 𝑡𝑡-9 

th (𝑡𝑡 =  {1, 2 , … ,𝑇𝑇}) time period, while the volume collected by the actual field detectors is 10 

denoted as 𝑅𝑅𝑓𝑓(𝑖𝑖, 𝑡𝑡). 𝑇𝑇 is the number of time periods during which the detectors collect data 11 

(simulation duration is 120 𝑚𝑚𝑖𝑖𝑚𝑚, collected every 2 𝑚𝑚𝑖𝑖𝑚𝑚, 𝑇𝑇 = 120/2 = 60 ). Furthermore, 12 

𝑁𝑁𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 denotes the total number of coil detectors. 13 

𝐶𝐶1 and 𝐶𝐶2 are defined as the degree of matching between the simulation and the 14 
observation in the bottleneck range, from the perspective of space and time. When 𝐶𝐶1=1, it 15 
means that the bottleneck area obtained by simulation completely matches with observation. 16 
If 𝐶𝐶2=1, the bottleneck area and speed value obtained by simulation are completely consistent 17 
with observations. The mathematical expressions are as follows: 18 

 𝐶𝐶1 = 2∑  𝑁𝑁
𝑖𝑖=1 ��∑  𝑇𝑇

𝑡𝑡=1 [𝐵𝐵𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)∧𝐵𝐵𝑆𝑆𝑅𝑅(𝑖𝑖,𝑡𝑡)]�⋅(𝑙𝑙𝑖𝑖+−𝑙𝑙𝑖𝑖)�
∑  𝑁𝑁
𝑖𝑖=1 ��∑  𝑇𝑇

𝑡𝑡=1 [𝐵𝐵𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)∨𝐵𝐵𝑆𝑆𝑅𝑅(𝑖𝑖,𝑡𝑡)]�⋅(𝑙𝑙𝑖𝑖+−𝑙𝑙𝑖𝑖)�
 (formula 2) 19 

 𝐶𝐶2 = 1 − 2∑  𝑁𝑁
𝑖𝑖=1 ��∑  𝑇𝑇

𝑡𝑡=1 [𝐵𝐵𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)∧𝐵𝐵𝑆𝑆𝑑𝑑(𝑖𝑖,𝑡𝑡)]⋅|𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)−𝑅𝑅𝑆𝑆(𝑖𝑖,𝑡𝑡)|�⋅(𝑙𝑙𝑖𝑖+−𝑙𝑙𝑖𝑖)�
∑  𝑁𝑁
𝑖𝑖=1 ��∑  𝑇𝑇

𝑡𝑡=1 [𝐵𝐵𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)∧𝐵𝐵𝑆𝑆𝑑𝑑(𝑖𝑖,𝑡𝑡)]⋅(𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡)−𝑅𝑅𝑆𝑆(𝑖𝑖,𝑡𝑡))�⋅(𝑙𝑙𝑖𝑖+−𝑙𝑙𝑖𝑖)�
 (13) 20 

The 𝐶𝐶1is used as the second objective function (formula 2) in the problem formulation 21 

section. First, the binary speed space-time maps of the simulated and actual traffic flow need to 22 

be calculated and generated as formula (4-5), which are denoted as 𝐵𝐵𝑅𝑅𝑆𝑆(𝑖𝑖, 𝑡𝑡) and 𝐵𝐵𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡). 23 

( , ) ( , )S RBS i t BS i t∧  represents the intersection of matrices, which is calculated 24 

mathematically by multiplying the internal elements of two matrices, while 25 

( , ) ( , )S RBS i t BS i t∨  represents the union. 𝑙𝑙𝑖𝑖+ − 𝑙𝑙𝑖𝑖 represents the distance between two coils. 26 

In addition to the four quantitative evaluation indicators, the accuracy of the simulation 27 

model can also be evaluated from an intuitive visual point of view by referring to the speed 28 

heat diagram. 29 
 30 

RESULT ANALYSIS 31 
Calibration result 32 

In the case study, the IDM model was selected as the car-following model, and the LC2013 33 
as the lane changing model. Two indicators of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 and 𝐶𝐶1 were selected as the fitness 34 

evaluation functions of the GA and PSO calibration algorithms. In the parallel GA calibration 35 
algorithm, we set the population size to 32 and the number of iterations to 30. In the parallel 36 
PSO calibration algorithm, the number of particle swarms was set to 32, and the number of 37 
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iterations was also 30. We controlled both evaluation times to be 960 times, which meant that 1 
a total of 960 simulation evaluations are carried out during the calibration process. 2 
TABLE 3 Accuracy comparison of calibration results 3 

Indicator 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 
Default 27.71 30.35 0 0 

Parallel GA 18.17 24.71 0.95 0.78 
Parallel PSO 19.80 25.04 0.90 0.67 

 4 

(a)Field 5 

 6 

(b)Default 7 
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 1 

(c)Result of parallel GA 2 

 3 

 (d)Result of parallel PSO 4 
Figure 11 Comparison of Speed Heatmap 5 

Table 3 shows the accuracy comparison between the parallel GA and the parallel PSO. 6 
Figure 11 shows the speed heatmaps of the two calibration algorithms’ results. When using the 7 
default values in the SUMO simulation platform, the simulation model cannot simulate the 8 
bottleneck state in the actual traffic flow at all. In terms of speed and flow matching, the 9 
calibration result of parallel GA is better than that of parallel PSO. The two index values of 10 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑  and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑙𝑙𝑑𝑑𝑓𝑓  have been improved by 34.43% and 18.58% respectively. In 11 

terms of the matching degree of the bottleneck range, the parallel GA algorithm seems to 12 
perform better. After calibration, the simulation accuracy of the model is greatly improved, and 13 
the experimental results verify the effectiveness of the parallel calibration algorithm proposed 14 
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in this paper. 1 

 2 
Efficiency evaluation indicators of PCT 3 

Based on the accuracy comparison indexes, the accuracy of the parallel calibration 4 
algorithms was verified. Regarding the evaluation of the efficiency improvement brought by 5 
parallel computing, aside from the commonly used computational time, we considered the 6 
ability of parallel algorithms to utilize available computing resources, which was called 7 
scalability. Thus, the efficiency evaluation indicator system was established based on both the 8 
computational time reduction rate and scalability, which included four indicators of calibration 9 
computational time, acceleration ratio, parallel efficiency, and algorithm scalability. 10 
    (1) Calibration computational time. The calibration time in this project is defined as the 11 
time of the entire calibration algorithm from encoding to outputting the best results. Calibration 12 
time is the most intuitive and simple evaluation indicator for the improvement of calibration 13 
efficiency by using parallel calculation. More importantly, the calibration time is also the basic 14 
data necessary to calculate other efficiency evaluation indicators such as acceleration ratio. 15 

(2) Acceleration ratio. The acceleration ratio refers to the ratio of the optimal single-thread 16 
calculation time of the program to the parallel calculation time using multiple processors. It is 17 
the simplest and most widely used metric to detect the performance of parallel algorithms. The 18 
parallel acceleration ratio is defined as follows: 19 

 𝑅𝑅𝑁𝑁 = 𝑡𝑡𝑠𝑠𝑑𝑑𝑠𝑠
𝑡𝑡𝑁𝑁

 (14) 20 

Where 21 

𝑁𝑁：Number of processors used by parallel computing programs 22 

𝑅𝑅𝑁𝑁：The acceleration ratio of the parallel algorithm when using 𝑁𝑁 processors. 23 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠：The time taken for a serial program to solve the problem on a single processor. 24 

𝑡𝑡𝑁𝑁：The time taken to solve the problem with N processors in parallel computing. 25 

(3) Parallel efficiency. Parallel efficiency is an evaluation index calculated based on the 26 

acceleration ratio, which is defined as follows: 27 

 𝑅𝑅𝑁𝑁 = 𝑆𝑆𝑁𝑁
𝑁𝑁

 (15) 28 

The efficiency of parallel computing is affected by the theoretical maximum acceleration 29 
ratio 𝑅𝑅𝑁𝑁 , which can also be interpreted as the program’s parallelizable ratio. Additionally, 30 
hardware components such as network communication quality and speed, application 31 
algorithms, communication overhead, and the specific characteristics of the problems being 32 
addressed also play significant roles. 33 

(4) Scalability. Scalability refers to the ability of parallel algorithms to increase parallel 34 
speed proportionally by adding more computing resources. It is a measure of the extent to which 35 
parallel algorithms can effectively utilize the increased capacity of multiprocessors. With the 36 
increase of the number of available processors, if the parallel marginal efficiency curve remains 37 
basically unchanged or slightly decreases, the scalability of the parallel algorithm is considered 38 
to be good. Conversely, if the efficiency curve drops quickly, it is considered that the parallel 39 
algorithm has poor scalability. 40 
 41 
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Results of calibration efficiency experiment 1 

The experiment controlled the evaluation times in parallel GA and parallel PSO calibration 2 
algorithms to be the same. When using different numbers of processors in parallel, the 3 
calibration computational time, reduction ratio and parallel acceleration ratio results of the two 4 
are shown in Table 4. Figure 12 shows the comparison of the time reduction ratio of parallel 5 
GA and parallel PSO calibration algorithms under different numbers of processors. Figure 13 6 
shows the efficiency curves of the two parallel algorithms. 7 
TABLE 4 Time reduction and acceleration ratio 8 

Calibration 
algorithm 

Parallel GA Parallel PSO 

Number of 
processors 

Calibration 
time（h） 

Time 
reduction 
ratio (%) 

Acceleration 
ratio 

Calibration 
time (h) 

Time 
reduction 
ratio (%) 

Acceleration 
ratio 

Serial 5.65 -* -* 4.84 -* -* 
2 2.31 59.1% 2.45 2.26 53.3% 2.14 
3 1.43 74.6% 3.94 1.76 63.6% 2.75 
4 1.28 77.3% 4.41 1.32 72.8% 3.68 
5 1.16 79.4% 4.85 1.07 77.9% 4.52 
6 1.01 82.1% 5.57 0.85 82.4% 5.69 
7 0.98 82.6% 5.75 0.80 84.6% 6.09 
8 0.97 82.9% 5.85 0.76 85.4% 6.42 

*: We take the calibration time in serial calculation mode without applying PCT as the baseline for 9 

comparison. Therefore, in the first row of the table, the time reduction rate and acceleration ratio do 10 
not exist, which have no actual physical meaning. 11 

 12 

 13 
Figure 12 Calibration time reduction ratio     14 
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 1 
Figure 13 Parallel efficiency curve 2 

It can be seen from the results that the application of parallel computing greatly shortens 3 
the calibration time. In the serial calibration algorithm, the calibration takes 5.65 hours. By 4 
using parallel computing technology, the calibration time is shortened to less than 1 hour, and 5 
a reduction of 80% is achieved. The experimental results verify the great significance of parallel 6 
computing in the calibration problem. 7 

As can be seen from the efficiency curves of the two, the curve of the parallel PSO 8 
calibration algorithm is gentler. This shows that its scalability is better, which means its ability 9 
to use increased computing resources is stronger. When the number of parallel processors is 10 
small, parallel computing has a better acceleration effect on the GA calibration algorithm. For 11 
example, when using 3 processors, the calibration time of parallel GA is reduced by 74.6% 12 
compared to serial calibration, while the time reduction rate of parallel PSO is only 63.6%. 13 
However, as the number of processors increases, the acceleration effect of parallel computing 14 
in the PSO calibration algorithm becomes better. When 8 processors are used for parallel 15 
computing, the calibration time of the parallel PSO calibration algorithm has been reduced by 16 
85.4%, while the reduction rate of the calibration time in the parallel GA calibration algorithm 17 
has stagnated at about 80%. In this case, if the effectiveness of parallel algorithms is compared 18 
only from the single dimension of the simulation time reduction ratio, once the number of 19 
processors used in parallel alters, the comparison result would be invalid. The result of the case 20 
study verifies the scientific and necessity of comparing the application effects of parallel 21 
computing from the two dimensions of simulation time reduction and scalability. 22 

 23 
CONCLUSION AND DISCUSSION 24 

At present, the heuristic algorithm has been widely used in the parameter calibration 25 
problem of microscopic traffic simulation, but the calculation bottleneck of the trial-and-error 26 
simulation makes it unable to meet the requirements of rapid calibration. PCT can be applied 27 
to optimize this computing bottleneck. This paper designs and implements parallel GA and 28 
parallel PSO calibration algorithms in accordance with the three steps of parallel framework 29 
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selection, algorithm bottleneck identification and subtask load balancing design. When 1 
evaluating the application effect of parallel computing, the evaluation indicator system was 2 
established from the two dimensions of calibration computational time and scalability.  3 

This research verifies that the application of parallel computing to parameter calibration can 4 
greatly speed up the calibration speed, and the acceleration effect reached above 80% in the 5 
case study. At the same time, the research results also prove that the ability of parallel algorithms 6 
for utilizing increased resources, which is called scalability, is an important and necessary 7 
indicator for evaluating parallel algorithms. The evaluation indicator system proposed in this 8 
paper from calibration computational time and scalability is reasonable and necessary. As one 9 
can be seen from the results, the scalability of parallel PSO is better than that of parallel GA. 10 

The findings of this paper have contributed to the rapid calibration of microscopic traffic 11 
simulation parameters. It also guides researchers who apply PCT to the calibration problem in 12 
the future. 13 

This study also holds limitations. The GA and PSO algorithms used in this paper are the 14 
most basic forms. At present, both algorithms have been improved a lot, producing many 15 
variants with better optimization effects. In future work, we will consider the latest variants of 16 
PSO and GA, and consider complex parameter adjustment mechanisms such as time-varying 17 
acceleration coefficients in PSO. 18 

On the other hand, although the PCT used in this paper greatly improved the efficiency of 19 
the parameter calibration, the current calibration computational time within one hour is still far 20 
from the requirement of online calibration. In the future, the calibration method based on the 21 
proxy model can be combined with PCT to further speed up the calibration process.  22 

Furthermore, verifying the applicability of this scheme to road networks of different scales 23 
and comparing the application effects is another worthy research direction. However, due to the 24 
lack of field traffic flow data on large-scale road networks, currently we are unable to do further 25 
research for the time being. As the network size increases, completely different parallel 26 
computing schemes can be applied. For example, we can divide the large road network into 27 
discrete road segments, and simulation model of the traffic flow on each segment can be run by 28 
different computing cores The effect of such a parallel scheme will definitely be different from 29 
our current scheme. We will take these into account in order to make a comprehensive, 30 
systematic and scientific research on the application of PCT in the calibration of microscopic 31 
traffic simulation models. This paper will be an essential foundation for our future research. 32 
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