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 Abstract—A throughout safety verification of an Autonomous 
Driving System (ADS) is essential to ensure its capability to drive 
safely in naturalistic traffic environment. Commonly used test 
automation methods such as Important Sampling (IS) do not 
perform well in distribution fitting efficiency in high-dimensional 
scenarios. In this paper, we proposed the Adaptive Subset 
Simulation (ADSS) method for safety verification for ADS. Two 
different systems under test were adopted: Baidu Apollo and 
Intelligent Driver Model (IDM). ADSS finds scenarios that are 
more and more critical iteratively and is capable to derive the 
accurate collision rate in naturalistic driving environment with 
fewer testing resources. A 3-dimensional car-following scenario 
and a 6-dimensional cut-in scenario were constructed in LGSVL 
to evaluate the performance of ADSS. The results showed that as 
the number of scenario dimensions increases, ADSS exhibits a 
more significant advantage over IS and vanilla Subset Simulation 
(SS) in terms of result accuracy and acceleration efficiency. In the 
6-dimensional cut-in scenario, the efficiency of ADSS was 112 
times faster than that of IS and 2 times faster than that of SS. 
Notably, ADSS demonstrated excellent testing effectiveness for 
both the complex ADS Apollo and the simple ADS IDM. These 
findings highlight the significance of utilizing ADSS in the safety 
verification of ADS. 
 
Index Terms—Autonomous Driving System, Subset Simulation, 
Accelerated Testing Method, Safety Verification, Test Automation 

 

I. INTRODUCTION 
utonomous vehicles (AVs) equipped with ADS will 
play an increasingly important role in the future, 
resulting in ever more complex traffic systems [1-3]. 

Due to the increase in complexity of the traffic system and the 
possible traffic scenarios, the safety and reliability verification 
of the ADS has become a serious challenge [4, 5], which is 
crucial for the large-scale deployment of the ADS on open 
roads. 

Due to the fact that the probability of the occurrence of high-
risk events or corner cases is extremely low in a naturalistic 
driving environment, it is extremely time-consuming and 
monetary-intensive to verify the safety of AVs on open roads 
[6]. To compensate for its limitations, simulated scenario-based 
testing methods have been proposed in recent years [7]. From 
the perspective of efficiency, although the number of traffic 
scenarios is theoretically infinite, customized scenario-based 
testing allows us to only focus on test-worthy scenarios and 
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avoid wasting time on inconsequential cases. It also avoids any 
physical damage to vehicle under test completely. From the 
perspective of authenticity and reliability, state-of-the-art 
simulation test platforms have functions such as environment 
rendering and vehicle dynamics simulation. They can be 
adopted to evaluate ADS from a full-stack, end-to-end 
perspective. It is capable of testing driver-assistant functions 
such as Autonomous Emergency Braking (AEB), Adaptive 
Cruise Control (ACC), as well as fully functional ADSs such as 
Baidu Apollo [8] and Autoware [9].  

Simulated scenario-based testing methods hold the 
advantages of high efficiency. However, it can still be 
intractable when dealing with all possibilities of driving 
environment. In order to maintain consistency with the 
naturalistic driving environment, Monte Carlo simulation is 
widely used to sample scenarios from the real-world data 
distribution. However, rare safety-critical cases in the real 
world cause the inefficiency of Monte Carlo simulation. To 
solve such limitations, variation reduction techniques is 
commonly adopted to help reduce the required simulation test 
runs. 

Two possible variation reduction methods to achieve a more 
efficient sampling are Importance Sampling (IS) and Subset 
Simulation (SS). The idea of IS is to transfer the original 
probability density distribution of the scenario to a region where 
rare events are more likely to occur, so to achieve unbiased 
estimation by adjusting the samples' weight. Arief et al. 
proposed a framework called Deep Probabilistic Accelerated 
Evaluation to design statistically guaranteed IS, to achieve 
accurate estimation of bounds on the safety-critical event 
probability, and proved its accelerated effectiveness in the 
safety test of ADS [10-12]. In addition, IS has been proven to 
be an effective accelerated evaluation method in lane-following 
scenarios [13] and cut-in scenarios [14]. However, IS requires 
prior knowledge of SUT’s failure region beforehand to 
determine the important sampling distribution, which is 
challenging since ADS is generally a black box to testers. 
Furthermore, IS performs unsatisfactorily in high-dimension 
scenarios, where it loses efficiency and correctness in 
estimating the qualified IS distribution. 

SS is a method used to estimate the extremely low probability 
of failure in engineering systems. It is widely used in structural 
reliability problems in buildings, aerospace, and nuclear 
systems [15-17]. The concept of SS is shown in Figure 1. The 
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parameter space is iteratively explored via the stratified 
sampling method. A new subset is created in each iteration and 
the samples gradually moves closer to the region of interests 
(i.e., the failure region). Compared with Monte Carlo methods 
and IS, SS requires fewer tests and shows better performance 
when dealing with high-dimensional models and black-box 
models [18].  

 
Figure 1 Illustration of subset simulation. In each iteration, 
subset containing rarer and more risky scenarios is 
sampled. Eventually, samples converge to the region with 
the highest risk level (i.e., the failure events). 

 
Despite its advantages, SS also encounters issues with lower 

efficiency and accuracy in high-dimensional problems. Because 
of the limited subset selection in high-dimensional space and 
the complex characteristics and boundaries of ADS, SS will 
result in inefficient sampling. Due to the fixed sampling 
parameters used in the sampling process of SS, the acceptance 
rate of samples decreases and sample correlation increases as 
the dimensionality increases. These issues lead to biased 
estimations of the probability of rare events.  

To overcome the limits of vanilla SS and address the high-
dimensional issues, a more efficient and precise approach is 
required. We propose the idea of Adaptive SS (ADSS). It can 
address challenges in high-dimensional problems and explore 
the parameter space more effectively by dynamically altering 
subsets, enhancing estimating efficiency and accuracy. During 
the sampling process, the variance of the sampling distribution 
can be dynamically adjusted through scaling coefficients to 
optimize the acceptance rate. ADSS's flexibility and 
intelligence allow it to better deal with complexity in high-
dimensional space, making it more useful in ADS testing. 

In this paper, both the vanilla SS and ADSS is applied to the 
accelerated safety verification of Baidu Apollo and the 
Intelligent Driver Model (IDM). They are two representative 
ADSs. Baidu Apollo is one of the most advanced data-driven 
ADSs and one of the most widely used open-source ADSs in 
the industry. While IDM is a widely used rule-based driving 
model in academia, especially in adaptive cruise control 
systems [19, 20]. Two Systems Under Test (SUTs) are 

connected with the simulator LGSVL [21], which can provide 
a high-fidelity test environment. In the simulation environment, 
the measured SUT is bridged with the ego vehicle and 
undertakes tasks such as perception, planning, prediction, and 
control. ADSS, SS are evaluated with IS as benchmark. Their 
performances in scenarios of different dimensions (a 3-
dimensional car-following scenario and a 6-dimensional cut-in 
scenario) are assessed. 

The contributions of this work is bi-folded: 
 The co-simulation of mainstreamed ADS based on a 

high-fidelity simulation platform is developed to 
emulate the real road traffic situation, which ensures the 
high reliability of the simulation testing results. 

 The idea of ADSS is proposed, which explores the 
parameter space more effectively by dynamically 
altering subsets. The ADSS’s and SS’s performance is 
compared with the IS as the benchmark. We prove that 
the advantage of ADSS and SS on accuracy and 
acceleration effect is more significant when the number 
of scenario dimensions increases based on multiple 
replicate experiments. 

The paper is organized as follows: In Section II, the concept 
and simulation procedure of SS and ADSS are presented. 
Section III introduces the design of the scenario-based testing 
method and simulation platform. Section IV discusses 
simulation results using ADSS, SS and IS on two SUTs. The 
last section concludes our findings. 

II. SCHEME FOR ADAPTIVE SUBSET SIMULATION 
In this section, the scheme of ADSS method is reviewed. The 

original and best-known stochastic simulation algorithm for 
estimating expectation is Monte Carlo Simulation (MCS). In 
MCS, the failure event probability, which is the probability 𝑝𝑝𝐹𝐹  
of AV collision in this paper, is estimated by the sample mean: 

 
𝑝𝑝𝐹𝐹 ≈ 𝑝̂𝑝𝐹𝐹𝑀𝑀𝑀𝑀 =

1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝐼𝐼𝐹𝐹�𝜃𝜃(𝑖𝑖)� (1) 

where 𝜃𝜃(1),𝜃𝜃(2), … , 𝜃𝜃(𝑁𝑁)  are the independent distributed 
samples from base distribution 𝑝𝑝(𝜃𝜃) , and 𝐼𝐼𝐹𝐹  is the indicator 
function about whether the vehicle has collided. It is worth 
mentioning that the sample 𝜃𝜃(𝑖𝑖) = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is the 
scenario to be tested, 𝑛𝑛 represents the variable dimension of the 
scenario input. The basic distribution 𝑝𝑝(𝜃𝜃) is the distribution 
obtained from natural driving scenario data fitting. The main 
advantage of MCS is that its efficiency does not depend on the 
dimension d of the parameter space. Thus, it can even operate 
in high-dimensional parameter space. The measure of accuracy 
in usual interpretation of MCS is coefficient of variation (c.o.v), 
which is calculated by: 

 
𝛿𝛿(𝑝̂𝑝𝐹𝐹𝑀𝑀𝑀𝑀) = �

1 − 𝑝𝑝𝐹𝐹
𝑁𝑁𝑝𝑝𝐹𝐹

 (2) 

However, MCS has a serious drawback: when the probability 
of the events 𝑝𝑝𝐹𝐹  is extremely small, number of samples N 
needed to achieve an acceptable level of confidence is 
extremely large. Therefore, accelerated testing method is 
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needed. 
The basic concept of SS is as follows: regard an extremely 

small failure probability 𝑝𝑝𝐹𝐹  as a product of relatively larger 
probabilities 𝑝𝑝𝐹𝐹 = ∏  𝑚𝑚

𝑗𝑗=1 𝑝𝑝𝑗𝑗, where 𝑝𝑝𝑗𝑗(𝑗𝑗 = 1:𝑚𝑚) are estimated 
sequentially. Then an estimate 𝑝̂𝑝𝐹𝐹𝑆𝑆𝑆𝑆 for 𝑝𝑝𝐹𝐹  could be obtained as 
𝑝̂𝑝𝐹𝐹𝑆𝑆𝑆𝑆 = ∏  𝑚𝑚

𝑗𝑗=1 𝑝̂𝑝𝑗𝑗 . To reach this goal, a function 𝑌𝑌(𝜃𝜃)  for 
expectation is considered and let 𝐹𝐹 = {𝜃𝜃:𝑌𝑌(𝜃𝜃) < 0} denote the 
set of failure events (also known as the collision events in this 
study). Then the intermediate event sets can be expressed as 
𝐹𝐹 = {𝜃𝜃:𝑌𝑌(𝜃𝜃) < 𝑏𝑏𝑚𝑚}, where 𝑏𝑏𝑚𝑚 represents intermediate failure 
threshold of each subset and 𝑌𝑌(𝜃𝜃)  is an indicator of the 
vehicle's level of danger during the test. The specific calculation 
steps of 𝑌𝑌(𝜃𝜃) are shown in Eq.(3). If a collision occurs, 𝑌𝑌(𝜃𝜃) 
equals to -1. If a collision does not occur, 𝑌𝑌(𝜃𝜃) equals to the 
minimum time to collision (𝑇𝑇𝑇𝑇𝑇𝑇 ) of the vehicle within the 
entire simulation run. Note that TTC is adopted herein as the 
safety indicator since such indicator has been widely adopted to 
represent the driving risk. The generalizability of the proposed 
ADSS method could be show by using TTC as the safety 
indicator. Note that TTC can be replaced by other safety 
indicators such as mTTC (modified TTC), TTB (Time to Brake), 
etc. 

 𝑌𝑌(𝜃𝜃) = �−1,      if Ego collides
TTC,      if Ego does not collide (3) 

Next, we take a decreasing sequence of nested subsets of the 
parameter space, starting from the entire space and shrinking to 
the failure region 𝐹𝐹: 

 ℝ𝑑𝑑 = 𝐹𝐹0 ⊃ 𝐹𝐹1 ⊃ ⋯ ⊃ 𝐹𝐹𝑚𝑚−1 ⊃ 𝐹𝐹𝑚𝑚 = 𝐹𝐹. (4) 
Subsets 𝐹𝐹1, … ,𝐹𝐹𝑚𝑚−1 are termed as intermediate failure 

regions. Then the failure probability 𝑝𝑝𝐹𝐹  can be written as a 
product of conditional probabilities: 

 
𝑝𝑝𝐹𝐹 = � 

𝑚𝑚

𝑗𝑗=1

𝑃𝑃�𝐹𝐹𝑗𝑗 ∣ 𝐹𝐹𝑗𝑗−1� = � 
𝑚𝑚

𝑗𝑗=1

𝑝𝑝𝑗𝑗 (5) 

where 𝑝𝑝𝑗𝑗 = 𝑃𝑃�𝐹𝐹𝑗𝑗 ∣ 𝐹𝐹𝑗𝑗−1�  is the conditional probability at the 
𝑗𝑗 − 1𝑡𝑡ℎ conditional level. With that, the original problem (i.e., 
estimation of the small failure probability 𝑝𝑝𝐹𝐹) is turned into a 
sequence of 𝑚𝑚  intermediate problems corresponding to 
evaluating larger conditional probabilities. Each conditional 
probability is denoted as: 

 
𝑝𝑝𝑗𝑗 ≈ 𝑝̂𝑝𝑗𝑗𝑀𝑀𝑀𝑀 =

1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝐼𝐼𝐹𝐹𝑗𝑗�𝜃𝜃𝑗𝑗−1
(𝑖𝑖) �, 𝜃𝜃𝑗𝑗−1

(𝑖𝑖) ∼ i.i.d. 𝜋𝜋�⋅∣ 𝐹𝐹𝑗𝑗−1� (6) 

In SS, the first probability 𝑝𝑝1 = 𝑃𝑃(𝐹𝐹1 ∣ 𝐹𝐹0) = 𝑃𝑃(𝐹𝐹1)  is 
estimated by MCS directly. Then, for 𝑗𝑗 ≥ 2  , one needs to 
sample from conditional distribution 𝜋𝜋�⋅∣ 𝐹𝐹𝑗𝑗−1�, which is not a 
trivial task. Markov chain Monte Carlo (MCMC) is commonly 
used to resolve this problem at the expense of generating 
dependent samples. The procedures of SS is illustrated in 
Figure 2. 

A. Modified Metropolis Algorithm 
MCMC is a class of algorithms for sampling from multi-

dimensional target probability distributions that cannot be 
directly sampled or not efficiently sampled [22]. The Modified 
Metropolis algorithm (MMA) is widely adopted as the MCMC 
method due to the following advantages: (1) The MMA utilizes 
an adaptive acceptance criterion to determine whether to accept 
new sampled scenarios. This criterion can dynamically adjust 
based on the importance and probability distribution of the 
scenarios, enabling a balance between global exploration and 
local focus. As a result, the algorithm can generate 
representative test cases efficiently. (2) The MMA circumvents 
the issue of detailed balance in the original Metropolis 
algorithm [23] by sampling from a custom probability 
distribution. This allows for smoother sampling during the 
generation of test scenarios, better reflecting the distribution 
characteristics of scenarios in a natural driving environment.  

 

 
Figure 2: Procedures of vanilla SS and ADSS. 

 
(3) The MMA exhibits high efficiency and flexibility when generating representative subsets of test scenarios. It can 
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explore large scenario spaces efficiently and can be expanded 
and adjusted according to specific requirements. Consequently, 
it is applicable to SS in various scales and complexities of 
autonomous driving scenarios.  

During the calculation, the MMA algorithm uses the seed 
samples determined from the previous subset, and evolves 
according to proposal distribution 𝑆𝑆𝑘𝑘�⋅∣ 𝜃𝜃𝑘𝑘

(𝑖𝑖)� , which 
corresponds to 𝑘𝑘𝑡𝑡ℎ  dimension of the original distribution 
𝜋𝜋𝑘𝑘(⋅). To summarize, the Modified Metropolis algorithm 
proceeds as follows: 
 

Modified Metropolis algorithm 
Input: 𝜃𝜃(1) ∈ 𝔽𝔽, initial state of a Markov chain; 
            𝑁𝑁𝑠𝑠, total states of Markov Chain 
            Original distribution: 𝜋𝜋𝑘𝑘(⋅) for dimension k; 
            Proposal distribution: 𝑆𝑆𝑘𝑘�⋅∣ 𝜃𝜃𝑘𝑘

(𝑖𝑖)� for dimension k; 
Algorithm: 
for 𝑖𝑖 =  1 , . . . ,𝑁𝑁𝑠𝑠 − 1 do 
       % Generate a candidate state 𝜉𝜉: 
       for 𝑘𝑘 =  1, . . . ,𝑑𝑑 do 
             Sample 𝜉𝜉𝑘𝑘 ∼ 𝑆𝑆𝑘𝑘�⋅∣ 𝜃𝜃𝑘𝑘

(𝑖𝑖)� 
             Compute the acceptance ratio 

              𝑟𝑟 = 𝜋𝜋𝑘𝑘�𝜉𝜉�𝑘𝑘�

𝜋𝜋𝑘𝑘�𝜃𝜃𝑘𝑘
(𝑖𝑖)�

                                                              (7) 

Accept or reject 𝜉𝜉𝑘𝑘 by setting 

                𝜉𝜉𝑘𝑘 = �
𝜉𝜉𝑘𝑘,      with probability 𝑚𝑚𝑚𝑚𝑚𝑚{1, 𝑟𝑟}
𝜃𝜃𝑘𝑘

(𝑖𝑖)     with probability 1 −𝑚𝑚𝑚𝑚𝑚𝑚{1, 𝑟𝑟}
      (8)                                 

        end for 
        Check whether 𝜉𝜉 ∈ 𝔽𝔽  by test, accept or reject 𝜉𝜉 by:          

𝜃𝜃(𝑖𝑖+1) = �
𝜉𝜉,      if 𝜉𝜉 ∈ 𝔽𝔽
𝜃𝜃(𝑖𝑖),      if 𝜉𝜉 ∉ 𝔽𝔽.                                     (9) 

end for 
Output: 𝜃𝜃(1), … ,𝜃𝜃(𝑁𝑁) , N states of a Markov chain. 

 
From the perspective of the MMA sampling process, the 

probability of generating duplicate candidates in each 
dimension is non-zero and it depends on the one-dimensional 
proposal distribution. As the scenario dimension 𝑛𝑛 increases, 
the probability of simultaneously having duplicate candidates 
across all dimensions decreases dramatically, resulting in 
candidates 𝜉𝜉  that are consistently different from the current 
state. Therefore, MMA demonstrates a certain degree of 
applicability in high-dimensional problems. However, as the 
dimensionality increases, MMA often faces challenges such as 
reduced acceptance rates and increased correlations between 
samples. With the rise in dimensionality, the probability of 
accepting proposed states in the MMA algorithm rapidly 
diminishes, leading to a decrease in samples falling into the 
target region 𝐹𝐹  and an increase in correlations between 
samples. These challenges can result in biasness in probability 
estimates, as illustrated in the following equation: 

 

𝐸𝐸 �
𝑃𝑃�𝑓𝑓 − 𝑃𝑃𝑓𝑓
𝑃𝑃𝑓𝑓

� = � 
𝑖𝑖>𝑗𝑗

𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗𝐸𝐸�ℤ𝑖𝑖ℤ𝑗𝑗� + �  
𝑖𝑖>𝑗𝑗>𝑘𝑘

𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗𝛿𝛿𝑘𝑘𝐸𝐸�ℤ𝑖𝑖ℤ𝑗𝑗ℤ𝑘𝑘�

+⋯+ �� 
𝑚𝑚

𝑖𝑖=1

𝛿𝛿𝑖𝑖�𝐸𝐸 ��  
𝑚𝑚

𝑖𝑖=1

ℤ𝑖𝑖�

 (10) 

where δ𝑖𝑖  denotes the c.o.v. of 𝑝𝑝𝚤𝚤�  and ℤ𝑖𝑖  is calculated as ℤ𝑖𝑖 =
�𝑝𝑝𝑖𝑖� − 𝑝𝑝𝑖𝑖�/δ𝑖𝑖.  Generally, �ℤ𝑖𝑖ℤ𝑗𝑗�,𝐸𝐸�ℤ𝑖𝑖ℤ𝑗𝑗ℤ𝑘𝑘� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 𝑗𝑗 > 𝑘𝑘 , are 
not equal to zero due to the fact that 𝑍𝑍𝑖𝑖 is mutually correlated. 
As a result, 𝑃𝑃𝑓𝑓�  is biased. 

B. Adaptive Subset Simulation with Optimal Scaling 
From the perspective of the sampling process in subset 

simulation, the performance of the algorithm relies on the 
choice of the variance in the proposal distribution 𝑆𝑆𝑘𝑘� ⋅∣∣ 𝜃𝜃𝑘𝑘

(𝑖𝑖) � 
within the MMA algorithm. A large variance of the proposal 
distribution will result in the rejection of many candidate 
samples, while a small variance will lead to high correlation 
between states. Therefore, enhancing the performance of the 
MMA algorithm can be achieved by adaptively adjusting the 
corresponding parameters during the sampling process. 

To gain further insights into the performance of the MMA 
algorithm in high dimensions, it becomes necessary to 
introduce an efficiency metric for quantification. Typically, the 
efficiency of the MMA algorithm is defined in terms of 
diffusion velocity, i.e., the speed at which the Markov chain 
converges to genetic moment estimates [24]. For example, in 
MMA, when constructing a one-dimensional Markov chain 
process 𝜃𝜃𝑡𝑡  for each dimension of the variables, efficiency is 
computed by considering the reciprocal of the integral of the 
autocorrelation function of 𝜃𝜃𝑡𝑡 . This implies that maximizing 
efficiency is equivalent to minimizing the correlation of the 
chain [25]. 

In the context of SS, MMA is applied to estimate each 
conditional probability 𝑃𝑃𝑃𝑃� 𝐹𝐹𝑗𝑗 ∣∣ 𝐹𝐹𝑗𝑗−1 �, where 𝑗𝑗 = 2, … ,𝑀𝑀. The 
coefficient of variation 𝛿𝛿𝑗𝑗 can be calculated using the following 
equation: 

 δ𝑗𝑗 = �
1 − 𝑃𝑃𝑗𝑗
𝑁𝑁𝑃𝑃𝑗𝑗

�1 + γ𝑗𝑗� (11) 

where: 
 

γ𝑗𝑗 = 2 � �1 −
𝑘𝑘𝑁𝑁𝑠𝑠
𝑁𝑁
� ρ𝑗𝑗(𝑘𝑘)

𝑁𝑁/𝑁𝑁𝑠𝑠−1

𝑘𝑘=1

 (12) 

𝑁𝑁𝑠𝑠 = 𝑝𝑝0𝑁𝑁  represents the number of seeds in the MCMC 
sampling at subset level 𝑗𝑗 , where 𝑝𝑝0  is a fixed intermediate 
failure probability. 𝑁𝑁/𝑁𝑁𝑠𝑠 = 1/𝑝𝑝0  is the length of each chain, 
and ρ𝑗𝑗(𝑘𝑘) denotes the average 𝑘𝑘-lag autocorrelation coefficient 

of the stationary sequence �𝐼𝐼𝐹𝐹𝑗𝑗 �θ𝑗𝑗−1
�(𝑙𝑙−1)/𝑝𝑝0+𝑡𝑡�� : 𝑡𝑡 = 1, … ,𝑁𝑁/

𝑁𝑁𝑓𝑓� , 𝑙𝑙 = 1, … ,𝑁𝑁𝑠𝑠. This sequence represents the autocorrelation 
of the Markov chain samples. 

As 𝛾𝛾𝑗𝑗  increases, the autocorrelation of the Markov chain 
samples also increases, leading to a decrease in the accuracy of 
subset simulation. Therefore, we can define the following 
performance metric: 
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 𝑒𝑒𝑒𝑒𝑓𝑓γ = �1 + γ𝑗𝑗�
−1

 (13) 
This metric can be used to compare the efficiency of the 

MMA algorithm during the sampling process. Specifically, it 
indicates that to achieve the same variance as the Monte Carlo 
method, the variance of 𝑃𝑃𝚥𝚥�  needs to be multiplied by the factor 

�1 + 𝛾𝛾𝑗𝑗�
−1

. An efficiency factor closer to 1 suggests higher 
algorithm efficiency, as it implies a smaller variance adjustment 
factor is required. Maximizing efficiency is equivalent to 
minimizing the correlation of the chain, i.e., minimizing 𝛾𝛾𝑗𝑗. 

The MMA algorithm samples from the proposal distribution 
𝑆𝑆( ⋅∣ 𝜃𝜃 ) , where the acceptance rate depends on whether the 
candidate state lies within the failure region, determined by the 
functional value of the candidate state. Gelman et al. proposed 
that the adjustment of acceptance rates should adhere to a 
fundamental principle: maintaining acceptance rates between 
30% and 70%. The basic principle behind this is that a low 
acceptance rate implies a large number of redundant samples in 
the Markov chain, while a high acceptance rate indicates a 
extremely slow movement of the Markov chain [25]. As 
mentioned above, minimizing the factor γ𝑗𝑗  corresponds to 
maximizing the efficiency measurement 𝑒𝑒𝑒𝑒𝑓𝑓𝛾𝛾 . Zuev et al. 
reported that the factor γ𝑗𝑗 reaches optimal when the acceptance 
rate is between 0.3 and 0.5 [22]. Through numerical 
experiments, Iason et al. demonstrated that, under the condition 
of 0.1 intermediate failure probability, for the problem of using 
a one-dimensional normal distribution as the proposal 
distribution, the optimal acceptance rate is approximately 0.44 
[26]. Experiments on 4 performance functions (a linear 
function, a convex function, a concave functions, and a 
hypersphere functions) were conducted to verify the optimal 
value of acceptance rate. It turns out 0.44 works well to find the 
failure cases in all 4 performance functions. 

Based on the research on the efficiency metrics and optimal 
acceptance rate of the MMA algorithm mentioned above, we 
propose dynamically adjusting the standard deviation σ𝑘𝑘 of the 
one-dimensional proposal distribution 𝑆𝑆𝑘𝑘( ⋅∣∣ 𝜃𝜃𝑘𝑘 ) to maintain its 
acceptance rate close to the optimal value of 0.44.  

In SS, we need to use samples �𝜃𝜃𝑗𝑗
(𝑘𝑘): 𝑘𝑘 = 1, … ,𝑁𝑁𝑠𝑠� falling 

into 𝐹𝐹𝑗𝑗  in simulation subset 𝑗𝑗 as seeds to simulate 𝑁𝑁𝑠𝑠  Markov 
chains to obtain samples of 𝜋𝜋� ⋅∣∣ 𝐹𝐹𝑗𝑗 � for subset 𝑗𝑗 + 1. The idea 
of ADSS is to simulate Markov chains step by step. In each step, 
𝑁𝑁𝑎𝑎 chains, occupying a portion of 𝑁𝑁𝑠𝑠, are simulated using the 
same standard deviation σ𝑘𝑘. After completing the simulation of 
𝑁𝑁𝑎𝑎  chains, the standard deviation σ𝑘𝑘  of the proposal 
distribution is adjusted based on the estimated acceptance rates 
of the previous 𝑁𝑁𝑎𝑎 chains. The seeds for simulating 𝑁𝑁𝑎𝑎 chains 
are randomly selected (without replacement) from 𝑁𝑁𝑠𝑠 seeds to 
ensure uniform convergence on the chain stepping, which 
guarantees the asymptotic unbiasedness of subset simulation. 

In the process of ADSS, a set of initial values are selected for 
the standard deviation of the proposal distribution, denoted as 
𝜎𝜎0𝑘𝑘, 𝑘𝑘 = 1, … ,𝑛𝑛. Additionally, an initial scaling parameter 𝜆𝜆1 ∈
(0,1) is determined. The number of chains 𝑁𝑁𝑎𝑎 after which the 
proposal distribution will be adapted is selected such that 

𝑁𝑁𝑠𝑠/𝑁𝑁𝑎𝑎 is an integer. The adaptive process is carried out at each 
iteration step 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠/𝑁𝑁𝑎𝑎 . In each adaptive step 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 
the standard deviation 𝜎𝜎𝑘𝑘 of the proposal distribution for each 
component is calculated by scaling the initial value 𝜎𝜎0𝑘𝑘 using 
the scaling coefficient 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . However, each 𝜎𝜎𝑘𝑘 cannot exceed 
the standard deviation of the corresponding random variable, 
which is 1.0. Therefore, 𝜎𝜎𝑘𝑘 is adaptively adjusted at each step 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 using the following equation: 

 σ𝑘𝑘 = min(λ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖σ0𝑘𝑘 , 1.0) (14) 
Then 𝑁𝑁𝑎𝑎  seeds are randomly selected from �𝜃𝜃𝑗𝑗

(𝑖𝑖): 𝑖𝑖 =

1, … ,𝑁𝑁𝑠𝑠�, and conditional sampling is conducted to simulate 
the corresponding Markov chains with standard deviation 𝜎𝜎𝑘𝑘. 
Subsequently, the average acceptance rate of the Markov chains 
is evaluated using the following Eq. (15): 

 
𝑎𝑎�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

1
𝑁𝑁𝑎𝑎

�𝐸𝐸�ξ�𝑎𝑎�θ𝑗𝑗
(𝑖𝑖)��

𝑁𝑁𝑎𝑎

𝑖𝑖=1

 (15) 

where 𝐸𝐸�𝜉𝜉�𝑎𝑎�𝜃𝜃𝑗𝑗
(𝑖𝑖)�� is the average acceptance sample possessed 

by the chain of seed sample 𝜃𝜃𝑗𝑗
(𝑖𝑖) . Then, adjustment of the 

scaling coefficient 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is updated based on Eq. (16): 
 log λiter +1 = log λiter + ζiter [𝑎𝑎�iter − 𝑎𝑎∗] (16) 

where 𝑎𝑎∗ is the pre-determined optimal acceptance rate which 
is set to 0.44. ζiter  is a positive real number intended to ensure 
that the variation of λiter  gradually diminishes and eventually 
converges to 0. Here, we set it as ζ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟−1/2. From Eq. 
(16), it can be inferred that if the chain's average acceptance rate 
is less than 0.44, the variance of each one-dimensional 
conditional normal distribution decreases, whereas if it exceeds 
0.44, the variance of each one-dimensional normal distribution 
increases. 

For the initial values of the standard deviation 𝜎𝜎0𝑘𝑘 during the 
iterative process of the conditional sampling algorithm, it is set 
as the sample variance of the seed samples in the corresponding 
subset. The sample mean and standard deviation for each 
dimension of the seed samples are calculated using the 
following equations: 

 
𝜇𝜇𝑘𝑘� =

1
𝑁𝑁𝑠𝑠
�θ𝑗𝑗𝑗𝑗

(𝑖𝑖)
𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (17) 

And 
 

𝜎𝜎�𝑘𝑘2 =
1

𝑁𝑁𝑠𝑠 − 1
��θ𝑗𝑗𝑗𝑗

(𝑖𝑖) − 𝜇̂𝜇𝑘𝑘�
2

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (18) 

The smaller the standard deviation σ�𝑘𝑘  corresponding to a 
random variable, the greater its impact on the limit state 
function. By selecting the initial values σ0𝑘𝑘  of the standard 
deviation in the conditional sampling algorithm adaptively, 
dimensions with larger impacts are sure to move over a wider 
range. Compared with SS using a fixed proposal distribution 
𝑆𝑆𝑘𝑘�⋅∣ 𝜃𝜃𝑘𝑘

(𝑖𝑖)�  for sampling, using adaptive scaling coefficients 
helps maintain acceptance rates extremely close to the optimal 
value, 0.44. 

All source code of vanilla SS and ADSS could be found at : 
https://github.com/f2133397/AdaptiveSubsetSimualtion 

The conditional sampling method corresponding to ADSS is 
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summarized as follows: 
 

Adaptive Conditional Sampling Method 
Input: 𝜃𝜃(1) ∈ 𝔽𝔽, initial state of a Markov chain; 
            𝑁𝑁𝑠𝑠, total states of Markov Chain 
            λ1(Initial scaling parameter) 
            Original distribution: 𝜋𝜋𝑘𝑘(⋅) for dimension k; 
            Proposal distribution: 𝑆𝑆𝑘𝑘� 𝜎𝜎𝑗𝑗𝑗𝑗 ∣∣ 𝜃𝜃𝑘𝑘

(𝑖𝑖) � for dimension k; 
Algorithm: 
Apply Eq. (14) and Eq. (15). Set 𝜎𝜎0𝑘𝑘 = 𝜎𝜎�𝑘𝑘, 𝑘𝑘 = 1, … ,𝑑𝑑 
for 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠/𝑁𝑁𝑎𝑎 do  
       for 𝑖𝑖 = (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1)𝑁𝑁𝑎𝑎  + 1, . . .,  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑁𝑁𝑎𝑎 do 
             for 𝒌𝒌 =  𝟏𝟏, . . . ,𝒅𝒅     

Sample 𝜉𝜉𝑘𝑘 ∼ 𝑆𝑆𝑘𝑘�𝜎𝜎𝑗𝑗𝑗𝑗 ∣ 𝜃𝜃𝑘𝑘
(𝑖𝑖)� 

                  Compute the acceptance ratio 

                                 𝑟𝑟 = 𝜋𝜋𝑘𝑘�𝜉𝜉�𝑘𝑘�

𝜋𝜋𝑘𝑘�𝜃𝜃𝑘𝑘
(𝑖𝑖)�

                                           (19)                             

Accept or reject 𝜉𝜉𝑘𝑘 by setting 

                    𝜉𝜉𝑘𝑘 = �
𝜉𝜉𝑘𝑘 ,      with probability 𝑚𝑚𝑚𝑚𝑚𝑚{1, 𝑟𝑟}
𝜃𝜃𝑘𝑘

(𝑖𝑖)     with probability 1 −𝑚𝑚𝑚𝑚𝑚𝑚{1, 𝑟𝑟}
 (20)            

             end for 
             Check whether 𝜉𝜉 ∈ 𝔽𝔽  by test, accept or reject 𝜉𝜉 by:              

𝜃𝜃(𝑖𝑖+1) = �
𝜉𝜉,      if 𝜉𝜉 ∈ 𝔽𝔽
𝜃𝜃(𝑖𝑖),      if 𝜉𝜉 ∉ 𝔽𝔽.                   (21)                   

      end for 
Evaluate the average acceptance rate 𝑎𝑎�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  of the last 𝑁𝑁𝑎𝑎 
chains using Eq. (15). 
Compute the new scaling parameter λiter +1 using Eq. 
(16). 

end for 
Output: 𝜃𝜃(1), … ,𝜃𝜃(𝑁𝑁𝑠𝑠) ,𝑁𝑁𝑠𝑠 states of a Markov chain. 

Ⅲ. SCENARIO-BASED TEST AND SIMULATION PLATFORM 

A. Scenario-based Testing 
Two typical scenarios: a 3-dimensional car-following 

scenario and a 6-dimensional cut-in scenario are constructed. 
The capabilities of different approaches (IS, SS, and ADSS) are 
compared from three aspects: accuracy, efficiency and 
robustness. Before the safety verification of the ADS, the 
parameter distribution of the scenario must conform to the 
naturalistic driving environment, that is, the base distribution 
p(x) must be fitted beforehand. 

Two Gaussian Mixed Models (GMMs) were established 
using 993 cut-in scenarios and 30,292 car-following scenarios 
extracted from highD, which is a large-scale naturalistic vehicle 
trajectory dataset from German highways [27]. GMM is 
commonly used as a parametric model of the probability 
distribution for multivariate data with an arbitrarily complex 
probability density function (PDF). 

1) 3-Dimensional Car-following Scenario: The car-
following scenario is the most basic functional scenario that 
AVs must handle, and rear-end collision is one of the most 
common collision types in real world. Two vehicles are defined 
in the logic scenario, one is the ego vehicle equipped with ADS, 

while the other is NPC (non-player character) vehicles which 
moves with a fixed speed (see Figure 3).  

2) 6-Dimensional Cut-in Scenario: A cut-in scenario is 
defined as a lane-change maneuver of a NPC vehicle that starts 
in an adjacent lane and ends in the ego’s lane, which is 
commonly seen and may cause severe collisions. We introduce 
three participants in a Cut-in scenario: the Ego vehicle, the Cut-
in NPC vehicle, and the leading NPC vehicle. The parameters 
contain the initial speeds of three vehicles (v1, v2, v3), the initial 
longitudinal gaps (S1x, S2x) and the initial lateral gap of (dis1y) 
(see Figure 4). During the cut-in scenario, the cut-in trajectory 
is fitted by a three-order Bezier curve.  
 

 
Figure 3. 3-Dimensional Car-following Logical Scenario. 
 

 
Figure 4. 6-Dimensional Cut-in Logical Scenario. 

B. Design of the Simulation Platform 
We aim to conduct the testing of ADSs in a sophisticated 

simulation environment. The following describes the ADS test 
framework we established, following the procedures of 
producing high-definition map, bridging between ADS and 
simulator, calibration of simulation parameter, and analyzing of 
simulation results. 

1) Producing High-definition maps: High-definition maps 
play an important role in autonomous driving simulation 
testing. In this study, we used roadrunner and Unity to create 
various formats of high-definition maps, which can meet the 
requirement of the cross-platform usage between LGSVL and 
Apollo. 

2) Co-Simulation Between ADS and Simulator: In the 
designed simulation experiment, the simulator provides a 
highly realistic simulation environment. As SUTs, ADSs need 
to complete specific driving tasks in the simulation scenario. 
We examine the risk levels of their driving behaviors during the 
simulation process. The simulator utilizes 3D rendering engine 
to accomplish the simulation of the real traffic environment. In 
addition, it simulates the functionality of the perception sensors 
of the autonomous vehicles, using which the surrounding 
environment including moving vehicles could be detected. 
During this process, ADSs receive the sensor perception results 
from the simulator, then the prediction, motion planning, 
control and other modules in the ADS workflow will return the 
corresponding control decisions back into the simulator to 
achieve co-simulation between environment and SUT. The 
interaction between the simulator and the ADSs under test is 
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shown in  Figure 5. 

 
Figure 5. The Co-Simulation between LGSVL and SUT. 

 
3) Simulation Setups: In the simulation experiments, the 

LGSVL simulator was adopted to emulate the real-world 
environment and vehicle dynamics. Baidu Apollo 7.0 and IDM 
were chosen as SUTs. During the simulation process, the 
vehicle under test can obtain the obstacle information 
(including the speed and position of the obstacle) at every 
moment through the sensors. In addition, in order to avoid the 
situation of collision-free caused by the braking principle of 
IDM, we set a parameter 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  as the hard-coded maximum 
deceleration, which is consistent with that of Apollo. Other 
parameters of IDM can be found in Table I [28]. 
 

TABLE I PARAMETERS OF IDM MODEL 
Name Description Value 

Vd Desired velocity 21.7 m/s 
T Safe time gap 1.2 s 
a Maximum acceleration 2.22 m/s 
b Comfortable deceleration 2.4 m/s2 
δ Acceleration exponent 4 
S0 Minimum distance in congested traffic 1 m 
S1 Safety distance exponent 2 m 

bmax Maximum deceleration 6 m/s2 
 

Experiment was run on a desktop with the following 
specifications: 

• Ubuntu version 18.04 
• Intel Core i7-11700 CPU @ 2.50GHz × 16 
• 64GB RAM 
• GeForce RTX 3080 PCIe4.0/DLSS 
• LGSVL simulator 2021.3 (linux64) with modular 

testing setup (3D Ground Truth sensor and Signal sensor 
publish ground truth perception data to Apollo via 
CyberRT bridge) 

• Baidu Apollo (7.0.0) 
4) Collection of simulation results: With the help of LGSVL 

Python API, a collision callback function was configured to 
monitor if the ego vehicle collides with other objects during the 
simulation process. In the meantime, with the 3D-ground truth 
information obtained by the sensor, we can calculate 𝑇𝑇𝑇𝑇𝑇𝑇 of the 
ego vehicle real-time. If it collided, the location of the collision 
and the speed of the colliding vehicle will be recorded. 
Otherwise, the 𝑇𝑇𝑇𝑇𝑇𝑇 will be returned. 

Ⅳ. CASE STUDY 
Using the base distribution previously established with 

GMM, we first performed MCS on the two SUTs to obtain the 
ground-truth collision rate and the required number of tests for 
the two SUTs in the two scenarios, with the relative half-width 
set to 0.2. For example, the performance of MCS for Apollo is 
shown in Figure 6. 

 

  
(a) Car-following scenario (b) Cut-in scenario 

Figure 6. Evolution of collision rates of Apollo obtained by 
MCS 
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(a) subset Ⅰ samples 

 
(b) subset Ⅱ samples 

 
(c) subset Ⅲ samples 

 
(d) subset Ⅳ samples 

Figure 7. Apollo samples tested by SS in cut-in scenario in 
each subset. The X-, Y-, Z- axis represent v1, v2, dis1y, 
respectively.  

A. Evaluate SUT using Subset Simulation 
By applying initial MMA algorithm, we can sample from 

conditional distribution 𝜋𝜋�⋅∣ 𝐹𝐹𝑗𝑗−1�. The total number of sample 
in each subset is set to 500, intermediate failure threshold is set 
to 0.1 [22]. The proposal distribution 𝑆𝑆𝑘𝑘(⋅∣⋅)  is normal 
distribution, which is the most well-studied candidate 
distribution. According to the test result 𝑌𝑌(𝜉𝜉) of each scenario 
sample defined in Eq. (3), it can be concluded that the smaller 
the test results, the more dangerous it is, and the closer it is to 
the failure zone represented by the collision scenario. When all 
sample seeds of the next subset are located within the failure 
region, both SS and ADSS converge. The samples selected by 
SS in each iteration for Apollo in cut-in scenario is shown in the 
Figure 7. 

 

 
Figure 8. Test result of Apollo in cut-in scenario. ADSS 
outperforms SS and IS in terms of acceleration effect. 

 
In general, 𝑣𝑣2 increases and 𝑑𝑑𝑑𝑑𝑑𝑑1𝑥𝑥  decreases from subset I to 

IV. This indicates that as the speed of the cut-in vehicle 
increases, and the longitudinal distance between the vehicles 
decreases, the level of danger increases that collisions are more 
likely to occur. 

IS with the same configuration as [14] was implemented in 
the above two scenarios. The performance of IS, SS, and ADSS 
in terms of acceleration rate in cut-in scenario are shown in 
Figure 10. 

According to the experiment result, the collision rates of 
Apollo obtained by SS and IS in the cut-in scenario are 
2.49 × 10−4 and 2.86 × 10−4, respectively. According to the 
ground truth obtained by MCS, the collision rate is 2.58 × 10−4, 
and the relative errors of SS and IS are 3.49% and 10.85%, 
respectively. SS achieves higher accuracy. From the number of 
tests required, the number of simulation runs required by SS is 
around 5,000. However, IS needs nearly 237,000 simulation 
runs to converge to the corresponding collision rate. It can be 
seen that compared with IS, the acceleration efficiency of SS 
increases by more than 47 times. Besides, ADSS achieved a 
superior acceleration effect compared to SS, approximately 
doubling the speed compared to SS. For ADS with simulation 
noise like Apollo, the acceleration effect of SS and ADSS is 
more obvious. 

B. Robustness Comparison of Accelerated Methods 
SS encounters challenges with diminishing sampling 

efficiency and result certainty as dimensionality of the scenario 
increases. Consequently, other than sampling efficiency, there 
is a necessity for ADSS to bolster its robustness in multiple 
trials to derive the collision rate. 

TABLE II and TABLE III shows the performance 
comparison of the three test methods (IS, SS, ADSS). Results 
are based on 20 replications. 
 

TABLE II PERFORMANCE OF DIFFERENT TEST METHODS 
FOR CAR-FOLLOWING SCENARIO 

Method 3-Dimensional Car-following 
SUT Mean of 𝑷𝑷�𝒇𝒇 𝑪𝑪𝑪𝑪𝑽𝑽𝑷𝑷�𝒇𝒇 Mean of Nsim 

MCS Apollo 2.392 × 10−4 0.009 4.064 × 105 

SS Apollo 2.351 × 10−4 0.213 4.980 × 103 

ADSS Apollo 𝟐𝟐.𝟑𝟑𝟑𝟑𝟑𝟑× 𝟏𝟏𝟏𝟏−𝟒𝟒 0.086 2.681 × 103 

IS Apollo 2.013 × 10−4 0.026 1.762 × 105 

MCS IDM 8.36 × 10−4 0.004 2.351 × 105 

SS IDM 8.03 × 10−4 0.152 1.6 × 103 

ADSS IDM 8.16 × 10−4 0.073 1.533 × 103 

IS IDM 𝟖𝟖.𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟒𝟒 0.012 9.569 × 104 

* Mean of 𝑃𝑃�𝑓𝑓 denotes the obtained collision rate over 20 replications. 
𝐶𝐶𝐶𝐶𝑉𝑉𝑃𝑃�𝑓𝑓  denotes the variance of 𝑃𝑃�𝑓𝑓 . A higher 𝐶𝐶𝐶𝐶𝑉𝑉𝑃𝑃�𝑓𝑓  indicates lower 
result robustness. Mean of Nsim denotes the mean value of number of 
required simulation runs over 20 replications. 
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TABLE III PERFORMANCE OF DIFFERENT TEST METHODS 
FOR CUT-IN SCENARIO 

Method 6-Dimensional Cut-in 
SUT Mean of 𝑷𝑷�𝒇𝒇 𝑪𝑪𝑪𝑪𝑽𝑽𝑷𝑷�𝒇𝒇 Mean of Nsim 

MCS Apollo 2.583 × 10−4 0.013 3.412 × 105 

SS Apollo 2.517 × 10−4 0.312 4.714 × 103 

ADSS Apollo 𝟐𝟐.𝟓𝟓𝟓𝟓𝟓𝟓× 𝟏𝟏𝟏𝟏−𝟒𝟒 0.196 2.103 × 103 

IS Apollo 2.142 × 10−4 0.097 2.373 × 105 

MCS IDM 7.653 × 10−3 0.011 2.687 × 104 

SS IDM 7.598 × 10−3 0.257 5.634 × 103 

ADSS IDM 𝟕𝟕.𝟔𝟔𝟔𝟔𝟔𝟔× 𝟏𝟏𝟏𝟏−𝟑𝟑 0.131 2.743 × 103 

IS IDM 7.363 × 10−3 0.084 1.765 × 104 

 
One can tell that both SS and ADSS achieve higher accuracy 

as compared to IS, which can be shown from the smaller 
deviation from MCS on indicator “mean of 𝑃𝑃�𝑓𝑓”. This is mainly 
due to the inability of IS to fully recognize the multiple 
separated failure regions that complex ADSs such as Apollo 
have. When the SUT is IDM, there is a decreasing trend in 
estimation error. Taking the cut-in scenario as an example, the 
relative error between IS and MCS has decreased from 17.1% 
to 3.8%. This is mainly because the test results obtained by IDM 
are more stable, and is not affected by simulation noise caused 
by communication delays between sensors, which is commonly 
seen in Apollo.  

As the scenario dimension increases, the deviation of the IS 
estimation tends to increase. It can be seen from TABLE II and 
TABLE III that as the number of dimensions of the scenario 
increases from 3 to 6, the estimation error of IS increases from 
15.8% to 17.1%. Meanwhile, the estimation errors of SS 
increase from 1.7% to 2.6%. When the actual number of 
conducted simulation runs, denoted as 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, serves as a metric 
for evaluating testing resource expenditure, discrepancies arise 
in the effectiveness of IS as compared to SS and ADSS. For 
instance, in three-dimensional car-following scenario where IS 
undertakes 3 × 103 simulation runs, resulting in mean of 𝑃𝑃�𝑓𝑓 at 
5.793 × 10−4, substantial deviations from MCS’s estimation: 
2.392 × 10−4  is observed. Consequently, under resource-
constrained testing environments, IS may exhibit limited 
practical applicability. 

From the perspective of the stability of the test results, the 
𝐶𝐶𝐶𝐶𝑉𝑉𝑃𝑃�𝑓𝑓  of IS is smaller than that of SS, indicating that the 
collision rate estimated by IS is more robust. In contrast, the 
collision rate estimated by SS fluctuates. However, the mean of 
𝑃𝑃�𝑓𝑓 estimated by SS based on 20 replications is closer to MCS 
despite its 𝐶𝐶𝐶𝐶𝑉𝑉𝑃𝑃�𝑓𝑓  is larger, which is mainly due to the fact it 
guarantees the stationary state of Markov Chain by 20 
replications. Judging from the required number of simulation 
runs, the acceleration effect of SS is prominent as compared to 
IS. The higher the dimension of the scenario is, the more 
significant advantage of SS over IS is. 

In between of SS and ADSS, from the perspective of the 
mean of 𝑃𝑃�𝑓𝑓 , across different scenarios and different SUTs, 

ADSS consistently demonstrates estimates closer to those 
obtained from MCS. Moreover, ADSS exhibits smaller 𝐶𝐶𝐶𝐶𝑉𝑉𝑃𝑃�𝑓𝑓 , 
indicating greater robustness. In terms of the mean of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 , 
ADSS consistently outperforms SS, achieving a doubled 
acceleration in the 6-dimensional cut-in scenario. Compared to 
SS, ADSS achieves improved accuracy in estimating 
probabilities and significantly reduces the number of required 
simulations, which shows that it has achieved the goal of 
increasing the acceptance rate in the conditional sampling 
process. In comparison to SS, ADSS demonstrates superior 
performance by dynamically adjusting sampling parameters 
such as acceptance rates and standard deviations. This 
adaptability allows ADSS to optimize the sampling process, 
resulting in more accurate estimations of rare event 
probabilities. 

V. CONCLUSIONS 
In this paper, we proposed the idea of SS and ADSS and their 

performances were compared with SS and IS. Both ADSS and 
SS employ the concept of hierarchical sampling, resulting in 
significant acceleration effect. Compared to SS, ADSS 
dynamically adjusts the proposal distribution to optimize 
sample acceptance rates, achieving improvement in both 
acceleration and robustness. SS is 50 times faster as compared 
to IS in 6-dimensional cut-in scenario, while ADSS is 2 times 
faster as compared to SS. 

In addition to safety validation through probability 
estimation of dangerous events, ADSS can also assist in 
identifying potential corner cases and safety hazards for 
autonomous driving systems. In this paper, the design of the 
functional function relies solely on the TTC as a measure, 
raising concerns about its applicability when facing other types 
of complex scenarios. Therefore, in various scenarios, the 
consideration of alternative indicators of risk severity becomes 
imperative. These indicators may encompass information such 
as vehicle speed, acceleration, road curvature, among others, 
offering a more comprehensive assessment of the danger level 
within traffic scenarios. This adjustment may enhance the 
accuracy and applicability of SS techniques. Besides, the 
inclusion of complex urban environments, uncertain 
interactions with non-vehicular traffic participants, and varied 
weather conditions would demonstrate ADSS’ novelty by 
showcasing its adaptability to real-world driving complexities. 
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